Skip to main content
Log in

Modeling Phase Selection and Extended Solubility in Rapid Solidified Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 29 October 2023

This article has been updated

Abstract

A new phase selection model based on the time-dependent nucleation theory was developed to investigate the effect of rapid solidification on extended solubility. The model was applied to predict the solubility as a function of undercooling for several binary Al alloys. The predictions of both eutectic and peritectic systems show good agreement with experimental data. It was demonstrated that the developed model is better than the T0 line method, which neglected the kinetic process of nucleation. Furthermore, the model can also be applied to ternary and multicomponent phases assuming the nucleation is limited by the scarcest species or the slowest diffuser. The feasibility and reliability of the new model make it a useful tool for novel alloy design for rapid solidification processes such as additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. W.E. Frazier: Metal additive manufacturing: a review. J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28. https://doi.org/10.1007/s11665-014-0958-z.

    Article  CAS  Google Scholar 

  2. D. Herlach: Non-equilibrium solidification of undercooled metallic metls. Mater. Sci. Eng. R. Rep., 1994, vol. 12, pp. 177–272. https://doi.org/10.1016/0927-796X(94)90011-6.

    Article  Google Scholar 

  3. H. Jones: The status of rapid solidification of alloys in research and application. J. Mater. Sci., 1984, vol. 19, pp. 1043–76. https://doi.org/10.1007/BF01120015.

    Article  CAS  Google Scholar 

  4. F.H. Froes, Y.-W. Kim, and S. Krishnamurthy: Rapid solidification of lightweight metal alloys. Mater. Sci. Eng. A, 1989, vol. 117, pp. 19–32. https://doi.org/10.1016/0921-5093(89)90082-8.

    Article  Google Scholar 

  5. D. Herlach: Non-equilibrium solidification of undercooled metallic melts. Metals (Basel), 2014, vol. 4, pp. 196–234. https://doi.org/10.3390/met4020196.

    Article  CAS  Google Scholar 

  6. K. Eckler, D.M. Herlach, R.G. Hamerton, and A.L. Greer: Dendrite growth velocities in highly undercooled, dilute Ni-C melts. Mater. Sci. Eng. A, 1991, vol. 133, pp. 730–33. https://doi.org/10.1016/0921-5093(91)90173-K.

    Article  Google Scholar 

  7. K. Eckler, R.F. Cochrane, D.M. Herlach, B. Feuerbacher, and M. Jurisch: Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys. Phys. Rev. B, 1992, vol. 45, pp. 5019–22. https://doi.org/10.1103/PhysRevB.45.5019.

    Article  CAS  Google Scholar 

  8. K. Eckler, A.F. Norman, F. Gärtner, A.L. Greer, and D.M. Herlach: Microstructures of dilute Ni C alloys obtained from undercooled droplets. J. Cryst. Growth, 1997, vol. 173, pp. 528–40. https://doi.org/10.1016/S0022-0248(96)01066-4.

    Article  CAS  Google Scholar 

  9. K. Eckler and D. Herlach: Measurements of dendrite growth velocities in undercooled pure Ni-melts—some new results. Mater. Sci. Eng. A, 1994, vol. 178, pp. 159–62. https://doi.org/10.1016/0921-5093(94)90535-5.

    Article  CAS  Google Scholar 

  10. Y. Wu, T.J. Piccone, Y. Shiohara, and M.C. Flemings: Dendritic growth of undercooled nickel-tin: Part I. Metall. Trans. A, 1987, vol. 18, pp. 915–24. https://doi.org/10.1007/BF02646933.

    Article  Google Scholar 

  11. Y. Wu, T.J. Piccone, Y. Shiohara, and M.C. Flemings: Dendritic growth of undercooled nickel-tin: Part II. Metall. Mater. Trans. A, 1987, vol. 18, pp. 925–32. https://doi.org/10.1007/BF02646934.

    Article  Google Scholar 

  12. Y. Wu, T.J. Piccone, Y. Shiohara, and M.C. Flemings: Dendritic growth of undercooled nickel-tin: Part III. Metall. Trans. A, 1988, vol. 19, pp. 1109–19. https://doi.org/10.1007/BF02628395.

    Article  Google Scholar 

  13. A. Munitz, A.B. Gokhale, and R. Abbaschian: Effect of supercooling on the microstructure of Al-Nb alloys. J. Mater. Sci., 2000, vol. 35, pp. 2263–71. https://doi.org/10.1023/A:1004783011253.

    Article  CAS  Google Scholar 

  14. N.J.E. Adkins, N. Saunders, and P. Tsakiropoulos: Rapid solidification of peritectic aluminium alloys. Mater. Sci. Eng., 1988, vol. 98, pp. 217–19. https://doi.org/10.1016/0025-5416(88)90158-9.

    Article  CAS  Google Scholar 

  15. M.G. Chu, A. Giron, and D.A. Granger: Microstructure and heat flow in melt-spun aluminum alloys, in Proc. ASM’s Int. Conf. Rapidly Solidified Mater., Metals Park, OH, 1986, pp. 311–16.

  16. M.G. Chu and D.A. Granger: Solidification and microstructure analysis of rapidly solidified melt-spun Al-Fe alloys. Metall. Trans. A, 1990, vol. 21, pp. 205–12. https://doi.org/10.1007/BF02656437.

    Article  Google Scholar 

  17. G. Waterloo and H. Jones: Microstructure and thermal stability of melt-spun Al-Nd and Al-Ce alloy ribbons. J. Mater. Sci., 1996, vol. 31, pp. 2301–10. https://doi.org/10.1007/BF01152938.

    Article  CAS  Google Scholar 

  18. J. Xu, Q. Zhou, J. Kong, Y. Peng, S. Guo, J. Zhu, and J. Fan: Solidification behavior and microstructure of Ti-(37–52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication. Addit. Manuf., 2021, https://doi.org/10.1016/j.addma.2021.1021139.

    Article  Google Scholar 

  19. Q. Tan, Y. Yin, A. Prasad, G. Li, Q. Zhu, D.H. StJohn, and M.X. Zhang: Demonstrating the roles of solute and nucleant in grain refinement of additively manufactured aluminium alloys. Addit. Manuf., 2022, https://doi.org/10.1016/j.addma.2021.102516.

    Article  Google Scholar 

  20. M. Opprecht, J.-P. Garandet, G. Roux, and C. Flament: An understanding of duplex microstructures encountered during high strength aluminium alloy laser beam melting processing. Acta Mater., 2021, vol. 215, p. 117024. https://doi.org/10.1016/j.actamat.2021.117024.

    Article  CAS  Google Scholar 

  21. F. Xiao, S. Wang, Y. Wang, D. Shu, G. Zhu, B. Sun, and D. StJohn: Niobium nanoparticle-enabled grain refinement of a crack-free high strength Al-Zn-Mg-Cu alloy manufactured by selective laser melting. J. Alloys Compd., 2022, vol. 900, p. 163427. https://doi.org/10.1016/j.jallcom.2021.163427.

    Article  CAS  Google Scholar 

  22. Y. Wang, X. Lin, N. Kang, Z. Wang, Q. Wang, Y. Liu, and W. Huang: Laser powder bed fusion of Zr-modified Al–Cu–Mg alloy: crack-inhibiting, grain refinement, and mechanical properties. Mater. Sci. Eng. A, 2022, vol. 838, p. 142618. https://doi.org/10.1016/j.msea.2022.142618.

    Article  CAS  Google Scholar 

  23. Z. Wang, X. Lin, Y. Tang, N. Kang, X. Gao, S. Shi, and W. Huang: Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior. J. Mater. Sci. Technol., 2021, vol. 69, pp. 168–79. https://doi.org/10.1016/j.jmst.2020.08.003.

    Article  CAS  Google Scholar 

  24. Q. Li, G. Li, X. Lin, D. Zhu, J. Jiang, S. Shi, F. Liu, W. Huang, and K. Vanmeensel: Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using Laser Powder Bed Fusion: design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms. Addit. Manuf., 2022, vol. 57, p. 102967. https://doi.org/10.1016/j.addma.2022.102967.

    Article  CAS  Google Scholar 

  25. Z. Wang, X. Lin, N. Kang, J. Chen, H. Tan, Z. Feng, Z. Qin, H. Yang, and W. Huang: Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J. Mater. Sci. Technol., 2021, vol. 95, pp. 40–56. https://doi.org/10.1016/j.jmst.2021.03.069.

    Article  CAS  Google Scholar 

  26. Z. Wang, X. Lin, L. Wang, Y. Cao, Y. Zhou, and W. Huang: Microstructure evolution and mechanical properties of the wire + arc additive manufacturing Al-Cu alloy. Addit. Manuf., 2021, vol. 47, p. 102298. https://doi.org/10.1016/j.addma.2021.102298.

    Article  CAS  Google Scholar 

  27. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater., 2009, vol. 57, pp. 941–71. https://doi.org/10.1016/j.actamat.2008.10.020.

    Article  CAS  Google Scholar 

  28. W. Kurz, M. Rappaz, and R. Trivedi: Progress in modelling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018. Int. Mater. Rev., 2021, vol. 66, pp. 30–76. https://doi.org/10.1080/09506608.2020.1757894.

    Article  CAS  Google Scholar 

  29. P.K. Galenko and D. Jou: Rapid solidification as non-ergodic phenomenon. Phys. Rep., 2019, vol. 818, pp. 1–70. https://doi.org/10.1016/j.physrep.2019.06.002.

    Article  CAS  Google Scholar 

  30. J.C. Baker and J.W. Cahn: Thermodynamics of solidification, in The Selected Works of John W. Cahn. Wiley, Hoboken, 2013, pp. 253–88. https://doi.org/10.1002/9781118788295.ch26.

    Chapter  Google Scholar 

  31. J.L. Murray: Thermodynamic factors in the extension of solid solubility in Al-based alloys. MRS Proc., 1982, vol. 19, p. 249. https://doi.org/10.1557/PROC-19-249.

    Article  Google Scholar 

  32. G. Shao and P. Tsakiropoulos: Prediction of phase selection in rapid solidification using time dependent nucleation theory. Acta Metall. Mater., 1994, vol. 42, pp. 2937–42. https://doi.org/10.1016/0956-7151(94)90391-3.

    Article  CAS  Google Scholar 

  33. J.-O.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Thermo-Calc & DICTRA, computational tools for materials science. Calphad Comput. Coupling Phase Diagr. Thermochem., 2002, vol. 26, pp. 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8.

    Article  CAS  Google Scholar 

  34. W. Cao, S.-L.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A.A. Chang, R. Schmid-Fetzer, and W.A.A. Oates: PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad Comput. Coupling Phase Diagr. Thermochem., 2009, vol. 33, pp. 328–42. https://doi.org/10.1016/j.calphad.2008.08.004.

    Article  CAS  Google Scholar 

  35. J.A. Cahill and A.V. Grosse: Viscosity and self-diffusion of liquid thallium from its melting point to about 1300°K. J. Phys. Chem., 1965, vol. 69, pp. 518–21. https://doi.org/10.1021/j100886a026.

    Article  CAS  Google Scholar 

  36. https://materials.springer.com/. (n.d.).

  37. V.T. Witusiewicz, A.A. Bondar, U. Hecht, J. Zollinger, V.M. Petyukh, O.S. Fomichov, V.M. Voblikov, and S. Rex: Experimental study and thermodynamic re-assessment of the binary Al-Ta system. Intermetallics, 2010, vol. 18, pp. 92–106. https://doi.org/10.1016/j.intermet.2009.06.015.

    Article  CAS  Google Scholar 

  38. R. Ichikawa, T. Ohashi, and T. Ikeda: Effects of cooling rate and supercooling degree on solidified structure of Al-Mn, Al-Cr and Al-Zr in rapid solidification. Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 280–84.

    Article  CAS  Google Scholar 

  39. L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, and W.K. Wang: Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. J. Mater. Process. Technol., 2008, vol. 207, pp. 107–11. https://doi.org/10.1016/j.jmatprotec.2007.12.059.

    Article  CAS  Google Scholar 

  40. J.A. Taylor: Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Mater. Sci., 2012, vol. 1, pp. 19–33. https://doi.org/10.1016/j.mspro.2012.06.004.

    Article  CAS  Google Scholar 

  41. W.S. Ebhota and T.-C. Jen: Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys, in Intermetallic Compounds—Formation and Applications. InTech, London, 2018. https://doi.org/10.5772/intechopen.73188.

    Chapter  Google Scholar 

  42. E. Cinkilic, C.D. Ridgeway, X. Yan, and A.A. Luo: A formation map of iron-containing intermetallic phases in recycled cast aluminum alloys. Metall. Mater. Trans. A, 2019, vol. 50, pp. 5945–56. https://doi.org/10.1007/s11661-019-05469-6.

    Article  CAS  Google Scholar 

  43. E. Cinkilic, M. Moodispaw, J. Zhang, J. Miao, and A.A. Luo: A new recycled Al–Si–Mg alloy for sustainable structural die casting applications. Metall. Mater. Trans. A, 2022, vol. 53, pp. 2861–73. https://doi.org/10.1007/s11661-022-06711-4.

    Article  CAS  Google Scholar 

  44. M. Yıldırım and D. Özyürek: The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Mater. Des., 2013, vol. 51, pp. 767–74. https://doi.org/10.1016/j.matdes.2013.04.089.

    Article  CAS  Google Scholar 

  45. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Zeitschrift Für Met., 2006, vol. 97, pp. 246–65. https://doi.org/10.3139/146.101249.

    Article  CAS  Google Scholar 

  46. J.F. Nie and B.C. Muddle: Microstructural design of high-strength aluminum alloys. J. Phase Equilib., 1998, vol. 19, pp. 543–51. https://doi.org/10.1361/105497198770341734.

    Article  CAS  Google Scholar 

  47. M.E. van Dalen, D.C. Dunand, and D.N. Seidman: Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al–Sc alloys. Acta Mater., 2005, vol. 53, pp. 4225–35. https://doi.org/10.1016/j.actamat.2005.05.022.

    Article  CAS  Google Scholar 

  48. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater., 2002, vol. 50, pp. 4021–35. https://doi.org/10.1016/S1359-6454(02)00201-X.

    Article  CAS  Google Scholar 

  49. E. Marquis, D. Seidman, M. Asta, and C. Woodward: Composition evolution of nanoscale AlSc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater., 2006, vol. 54, pp. 119–30. https://doi.org/10.1016/j.actamat.2005.08.035.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Senior Design team, K. Duncan, J. B. Fletcher, C. Simcoe, E. Klafehn, and H. Long, for practicing the model, experimental trials, and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijia Gu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 3b was corrected.

Appendix

Appendix

In the following, we use Al-Cr binary system as an example to illustrate how to obtain the relationship between extended solid solubility and undercooling.

  1. 1.

    Identifying the first intermetallic phase (Al45Cr7) appearing in the Al-rich side of the equilibrium Al-Cr binary phase diagram.

  2. 2.

    Calculating \({d}_\text{a}\) of both Al45Cr7 and \(\alpha \)-Al from the density data[36] using Eq. [2].

  3. 3.

    Evaluating the melting temperature \({T}_\text{M}\) and molar entropy of fusion \({\Delta S}_\text{m}\) for both Al45Cr7 and \(\alpha \)-Al using Thermo-Calc. To simplify, we assume Al-\(x\) wt pct Cr has the same melting temperature and entropy as pure Al. For low solute concentration, it is an acceptable assumption.

  4. 4.

    For each solubility value \(x\), evaluating \({x}_{\mathrm{L},\mathrm{eff}}\), i.e., \({x}_{\mathrm{L},1}\approx 1.0\) (for small \(x\)), and \({x}_{\mathrm{L},2}=\frac{7x}{52}\).

  5. 5.

    Substituting all the parameters in and solving Eq. [5] to obtain the critical temperature \(T\).

  6. 6.

    Calculating undercooling corresponding \(\Delta T\) for each solubility value \(x\), using the liquidus temperature of Al-\(x\) wt pct Cr obtained from Thermo-Calc (with database TCAL7).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinbo, A., Gu, Y. Modeling Phase Selection and Extended Solubility in Rapid Solidified Alloys. Metall Mater Trans A 55, 54–62 (2024). https://doi.org/10.1007/s11661-023-07221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07221-7

Navigation