Skip to main content
Log in

Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Time-temperature dependence of the γ′ phase volume fraction was investigated for a second generation single crystal nickel-based superalloy exposed to very short high temperature regimes (1,100–1,200 °C). In this temperature range, the dissolution of the strengthening γ′ phase occurs. Evolution of the γ′ volume fraction in transient regimes has been established for each temperature and activation energy of the dissolution phenomenon were determined. They directly attest from the activity of the diffusing species involved during this phenomenon. From these analyses, the volume fraction at equilibrium was established for the entire temperature range where dissolution occurs. A model, based on a time/temperature equivalence, is proposed to quantify the γ′ volume fraction dissolved during short high temperature exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erickson GL (1996) In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (TMS) (eds) Superalloys 1996. Warrendale, p 35

  2. Royer A, Bastie P, Veron M, (1999) Scr Mater 40:955

    Article  CAS  Google Scholar 

  3. Caron P (1995) Colloque National Superalliage Monocristallin. Toulouse

  4. Murakumo T, Kobayashi T, Koizumi Y, Harada H (2004) Acta Mater 52:3737

    Article  CAS  Google Scholar 

  5. Ardell AJ, Nicholson RB (1966) Acta Metallur 14:1295

    Article  CAS  Google Scholar 

  6. Tien JK, Copley SM (1971) Met Trans 2:215

    Article  CAS  Google Scholar 

  7. Svoboda J, Lukas P (1996) Acta Mater 44:2557

    Article  CAS  Google Scholar 

  8. Louchet F, Hazotte A (1997) Scr Mater 37:589

    Article  CAS  Google Scholar 

  9. Prikhodko SV, Ardell AJ (2003) Acta Mater 51:5001

    Article  CAS  Google Scholar 

  10. Prikhodko SV, Ardell AJ (2003) Acta Mater 51:5013

    Article  Google Scholar 

  11. Prikhodko SV, Ardell AJ (2003) Acta Mater 51:5021

    Article  CAS  Google Scholar 

  12. Pollock TM, Argon AS (1994) Acta Metallur Mater 42:1859

    Article  CAS  Google Scholar 

  13. Pollock TM, Field R, Murphy W (1998). In: Science ICO (ed) Modelling of microstructural evolution in creep resistant materials. Center for continuing education, London, p 193

    Google Scholar 

  14. Grosdidier T, Hazotte A, Simon A. (1998) Mater Sci Eng A 256:183

    Article  Google Scholar 

  15. Grosdidier T, Hazotte A, Simon A (1994) Scr Metallur Mater 30:1257

    Article  CAS  Google Scholar 

  16. Diologent F (2002) PhD thesis, Université de Paris Sud—Centre d’Orsay

  17. Serin K, Gobenli G, Eggeler G (2004) Mater Sci Eng A 387–389:133

    Article  Google Scholar 

  18. Soucail M, Bienvenu Y (1996) Mater Sci Eng A 220:215

    Article  Google Scholar 

  19. Roebuck B, Cox D, Reed R (2001) Scr Mater 44:917

    Article  CAS  Google Scholar 

  20. Monajati H, Jahazi M, Bahrami M, Yue S (2004) Mater Sci Eng A 373:286

    Article  Google Scholar 

  21. Fournier D (1995) Colloque National Superalliage Monocristallin. Toulouse

  22. Benyoucef M, Coujou A, Barbker B, Clement N, (1997) Mater Sci Eng A 234–236:692

    Article  Google Scholar 

  23. Kakehi K (1999) Metallur Mater Trans 30A:1249

    Article  Google Scholar 

  24. Brass AM, Roux D, Chene J (2002) Mater Sci Eng A 323:97

    Article  Google Scholar 

  25. Duval S, Chamberland S, Caron P, Blavette D, (1994) Acta Metallur Mater 42:185

    Article  CAS  Google Scholar 

  26. Weast RC (ed) (1985) Handbook of chemistry and physics, 66th edn. CRC Press

Download references

Acknowledgements

The authors acknowledge financial support from la Délégation Générale de l’Armement (DGA) and TURBOMECA—groupe SAFRAN company, which is also acknowledged for providing the material. The authors would also like to thanks P. CARON (ONERA) for thermal treatments carried out until thermodynamic equilibrium. A. GLAD is gratefully acknowledged for English suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cormier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cormier, J., Milhet, X. & Mendez, J. Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy. J Mater Sci 42, 7780–7786 (2007). https://doi.org/10.1007/s10853-007-1645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1645-3

Keywords

Navigation