Skip to main content
Log in

Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A filter assembly in the upper stream of the spinneret was used to disturb the mesophase pitch (MP) melt flow during the spinning of precursor fibers. We studied the microstructure evolution mechanism of the MP-based carbon fibers during this process. Results showed that the use of filter assembly had a significant effect on the size of the split in the cross-section of carbon fibers. The split has been completely depressed in the carbon fibers spun with 50 layers of plain-weave. Selected area electron diffraction results showed that carbon fibers spun with 50 layers of plain-weave screens exhibited an apparent decrease of the orientational order of the (002) diffraction plane in both center and transition regions. The results of Raman spectroscopy indicated that, the size of graphitic microcrystalline domain in carbon fibers decreased with increasing the number of plain-weave screens in the filter assembly. Our studies confirmed the roles of the filter assembly in precursor fiber spinning to disrupt the mesophase domain formation in the MP melt and thus induce a reduced domain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MP:

Mesophase pitch

MPCF:

Mesophase pitch-based carbon fibers

MPn:

Naphthalene-derived mesophase pitch

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

SAED:

Selected area electron diffraction

f HOF :

Herman’s Orientation Factor

References

  1. Edie DD (1998) Carbon 36(4):345

    Article  CAS  Google Scholar 

  2. Naito K (2013) J Mater Sci 48:4163. doi:10.1007/s10853-013-7229-5

    Article  CAS  ADS  Google Scholar 

  3. Naito K (2013) J Mater Sci 48:6056. doi:10.1007/s10853-013-7402-x

    Article  CAS  ADS  Google Scholar 

  4. Endo M (1988) J Mater Sci 23(2):598. doi:10.1007/BF01174692

    Article  CAS  ADS  Google Scholar 

  5. Mchugh JJ, Edie DD (1996) Carbon 34(11):1315

    Article  CAS  Google Scholar 

  6. de Andrade Lima LRP, Rey AD (2004) Carbon 42:1263

    Article  Google Scholar 

  7. Matsumoto T (1985) Pure Appl Chem 57(11):1553

    Article  CAS  Google Scholar 

  8. Matsumoto M, Iwashita T, Arai Y, Tomioka T (1993) Carbon 31(5):715

    Article  CAS  Google Scholar 

  9. Hamada T, Nishida T, Sajiki Y, Matsumoto M, Endo M (1987) J Mater Res 2(6):850

    Article  CAS  ADS  Google Scholar 

  10. Yao Y, Chen J, Liu L, Dong Y, Liu A (2012) J Mater Sci 47:5509. doi:10.1007/s10853-012-6442-y

    Article  CAS  ADS  Google Scholar 

  11. Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y (2000) Carbon 38:305

    Article  CAS  Google Scholar 

  12. Morita K, Murata Y, Ishitani A, Murayama K, Ono T, Nakajima A (1986) Pure Appl Chem 58(3):455

    Article  CAS  Google Scholar 

  13. Katagiri G, Ishida H, Ishitani A (1988) Carbon 26(4):565

    Article  CAS  Google Scholar 

  14. Ammar MR, Rouzaud JN, Charon E, Findling N (2010) In: Annual world conference on carbon, pp 611–612

  15. Korai Y, Hong SH, Mochida I (1998) Carbon 36(1):79

    Article  CAS  Google Scholar 

  16. Korai Y, Hong SH, Mochida I (1999) Carbon 37(2):203

    Article  CAS  Google Scholar 

  17. Hong SH, Korai Y, Mochida I (1999) Carbon 37(6):917

    Article  CAS  Google Scholar 

  18. Taylor GH, Cross LE (1993) J Mater Sci 28(23):6503. doi:10.1007/BF01352221

    Article  CAS  ADS  Google Scholar 

  19. Fathollahi B, White JL (1994) J Rheol 38(5):1591

    Article  CAS  ADS  Google Scholar 

  20. Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K (1996) Carbon 34(8):941

    Article  CAS  Google Scholar 

  21. Ogalea AA, Lin C, Anderson DP, Kearns KM (2002) Carbon 40(8):1309

    Article  Google Scholar 

  22. Farhoudi Y, Rey AD (1993) Rheo Acta 32:207

    Article  CAS  Google Scholar 

  23. Farhoudi Y, Rey AD (1993) J Rheol 37:289

    Article  CAS  ADS  Google Scholar 

  24. Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, New York

    Google Scholar 

  25. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poeschl U (2005) Carbon 43(8):1731

    Article  CAS  Google Scholar 

  26. Hamada T, Furuyama M, Sajiki Y, Tomioka T, Endo M (1990) J Mater Res 5(3):570

    Article  CAS  ADS  Google Scholar 

  27. Kong K, Deng L, Kinloch IA, Young RJ, Eichhorn SJ (2012) J Mater Sci 47:5402. doi:10.1007/s10853-012-6426-y

    Article  CAS  ADS  Google Scholar 

  28. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Carbon 43:1731

    Article  CAS  Google Scholar 

  29. Tuinstra F, Koenig JL (1970) J Chem Phys 53(3):1126

    Article  CAS  ADS  Google Scholar 

  30. Yoon SH, Korai Y, Mochida I, Kato I (1994) Carbon 32(2):273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (No. 51002127 and 51072169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Chen, J., Liu, L. et al. Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism. J Mater Sci 49, 191–198 (2014). https://doi.org/10.1007/s10853-013-7692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7692-z

Keywords

Navigation