Skip to main content

Advertisement

Log in

The effect of high-temperature vapor deposition polymerization of polyimide coating on tensile properties of polyacrylonitrile- and pitch-based carbon fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon fibers are widely used as a reinforcement in composite materials because of their high-specific strength and modulus. Current trends toward the development of carbon fibers have been driven in two directions; ultrahigh tensile strength fiber with a fairly high strain to failure (~2 %), and ultrahigh modulus fiber with high-thermal conductivity. Today, a number of ultrahigh strength polyacrylonitrile (PAN)-based (more than 6 GPa), and ultrahigh modulus pitch-based (more than 900 GPa) carbon fibers have been commercially available. In the present work, the tensile properties of polyimide-coated PAN-based (T1000GB, T300, and M60JB) and pitch-based (K13D and XN-05) carbon fibers have been investigated using a single-filament tensile test. The pyromellitic dianhydride/4-4′-oxydianiline polyimide coating was deposited on the carbon fiber surface using high-temperature vapor deposition polymerization (VDPH). The Weibull statistical distributions of the tensile strength were characterized. The results clearly show that the VDPH polyimide coating improves the tensile strength and the Weibull modulus of PAN- and pitch-based carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The polyimides were non-conducting materials and might be coated with a conducting layer to prevent specimen charging effects. However, the carbon fibers were conducting materials (the one end of carbon fiber was fixed with a conducting tape) and the thickness of polyimide coating was quite thin in this study. The specimen charging effects were as small as they could ignore. Therefore, the polyimide-coated carbon fiber surfaces were not coated with a conductive (gold, platinum, graphite, or osmium etc.) layer.

  2. The sizing materials and polyimides were non-conducting materials and might be coated with a conducting layer to prevent specimen charging effects. However, the carbon fibers were conducting materials (the one end of carbon fiber was fixed with a conducting tape) and the thickness of polyimide coating (or sizing) was quite thin in this study. The specimen charging effects were as small as they could ignore. Therefore, the as-received (with sizing) and polyimide-coated carbon fiber surfaces were not coated with a conductive (gold, platinum, graphite or osmium etc.) layer.

References

  1. Fitzer E (1989) Carbon 27(5):621. doi:10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  2. Chand S (2000) J Mater Sci 35(6):1303. doi:10.1023/A:1004780301489

    Article  CAS  Google Scholar 

  3. Rosa LG, Colella A, Anjinho CA (2006) Mater Sci Forum 514–516:672. doi:10.4028/www.scientific.net/MSF.514-516.672

    Article  Google Scholar 

  4. Kumar S, Wang Y (1997) In: Mallick PK (ed) Composites engineering handbook. Dekker, New York, p 51

    Google Scholar 

  5. Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Carbon 46(2):189. doi:10.1016/j.carbon.2007.11.001

    Article  CAS  Google Scholar 

  6. Naito K, Tanaka Y, Yang JM, Kagawa Y (2009) J Am Ceram Soc 92(1):186. doi:10.1111/j.1551-2916.2008.02868.x

    Article  CAS  Google Scholar 

  7. Juska TD, Puckett PM (1997) In: Mallick PK (ed) Composites engineering handbook. Dekker, New York, p 101

    Google Scholar 

  8. Aggour L, Fitzer E, Ignotowitz E, Sahebkar M (1974) Carbon 12(3):358. doi:10.1016/0008-6223(74)90079-7

    Article  CAS  Google Scholar 

  9. Vincent H, Vincent C, Scharef JP, Mourichoux H, Bouix J (1992) Carbon 30(3):495. doi:10.1016/0008-6223(92)90049-3

    Article  CAS  Google Scholar 

  10. Piquero T, Vincent H, Vincent C, Bouix J (1995) Carbon 33(4):455. doi:10.1016/0008-6223(94)00170-5

    Article  CAS  Google Scholar 

  11. Wang YQ, Zhou BL, Wang ZM (1995) Carbon 33(4):427. doi:10.1016/0008-6223(94)00167-X

    Article  CAS  Google Scholar 

  12. Emig G, Popovska N, Schoch G, Stumm T (1998) Carbon 36(4):407. doi:10.1016/S0008-6223(97)00213-3

    Article  CAS  Google Scholar 

  13. R’Mili’ M, Massardier V, Merle P, Vincent H, Vincent C (1999) Carbon 37(1):129. doi:10.1016/S0008-6223(98)00197-3

    Article  Google Scholar 

  14. Labruquere S, Blanchard H, Pailler R, Naslain R (2002) J Eur Ceram Soc 22(7):1001. doi:10.1016/S0955-2219(01)00410-1

    Article  CAS  Google Scholar 

  15. Gawad OA, Abou Tabl MH, Hamid ZA, Mostafa SF (2006) Surf Coat Technol 201(3–4):1357. doi:10.1016/j.surfcoat.2006.02.001

    Article  Google Scholar 

  16. Baklanova NI, Zima TM, Boronin AI, Kosheev SV, Titov AT, Isaeva NV, Graschenkov DV, Solntsev SS (2006) Surf Coat Technol 201(6):2313. doi:10.1016/j.surfcoat.2006.03.046

    Article  CAS  Google Scholar 

  17. Subramanian RV, Nyberg EA (1992) J Mater Res 7(3):677. doi:10.1557/JMR.1992.0677

    Article  CAS  Google Scholar 

  18. Matsumoto A, Tsutsumi K, Kaneko K (1992) Langmuir 8(10):2515. doi:10.1021/la00046a027

    Article  CAS  Google Scholar 

  19. Landry CC, Barron AR (1995) Carbon 33(4):381. doi:10.1016/0008-6223(94)00162-S

    Article  CAS  Google Scholar 

  20. Zeng QB (1998) J Appl Polym Sci 70(1):177. doi:10.1002/(SICI)1097-4628(19981003)70:1<177:AID-APP17>3.0.CO;2-4

    Article  CAS  Google Scholar 

  21. Peng P, Li XD, Yuan GF, She WQ, Cao F, Yang DM, Zhou Y, Liao J, Yang SL, Yue MJ (2001) Mater Lett 47(3):171. doi:10.1016/S0167-577X(00)00231-7

    Article  CAS  Google Scholar 

  22. Richards VN, Vohs JK, Fahlman BD, Williams GL (2005) J Am Ceram Soc 88(7):1973. doi:10.1111/j.1551-2916.2005.00248.x

    Article  CAS  Google Scholar 

  23. Downs WB, Baker RTK (1991) Carbon 29(8):1173. doi:10.1016/0008-6223(91)90035-H

    Article  CAS  Google Scholar 

  24. Zhu S, Su CH, Lehoczky SL, Muntele I, Ila D (2003) Diam Relat Mater 12(10–11):1825. doi:10.1016/S0925-9635(03)00205-X

    Article  CAS  Google Scholar 

  25. Tzeng SS, Hung KH, Ko TH (2006) Carbon 44(5):859. doi:10.1016/j.carbon.2005.10.033

    Article  CAS  Google Scholar 

  26. Zhao JO, Liu L, Guo QG, Shi JL, Zhai GT, Song JR, Liu ZJ (2008) Carbon 46(2):380. doi:10.1016/j.carbon.2007.11.021

    Article  CAS  Google Scholar 

  27. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Langmuir 23(7):3970. doi:10.1021/la062743p

    Article  CAS  Google Scholar 

  28. Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) J Appl Phys 91(9):6034. doi:10.1063/1.1466880

    Article  CAS  Google Scholar 

  29. Qian H, Bismarrck A, Greenhalgh ES, Kalinka G, Shaffer MSP (2008) Chem Mater 20(5):1862. doi:10.1021/cm702782j

    Article  CAS  Google Scholar 

  30. Naito K, Yang JM, Tanaka Y, Kagawa Y (2008) Appl Phys Lett 92(23):231912. doi:10.1063/1.2944258

    Article  Google Scholar 

  31. Gao SL, Mader E, Plonka R (2008) Compos Sci Technol 68(14):2892. doi:10.1016/j.compscitech.2007.10.009

    Article  CAS  Google Scholar 

  32. Gao SL, Mader E, Plonka R (2007) Acta Mater 55(3):1043. doi:10.1016/j.actamat.2006.09.020

    Article  CAS  Google Scholar 

  33. Kim JK, Mai YW (1991) J Mater Sci 26(17):4702. doi:10.1007/BF00612409

    Article  CAS  Google Scholar 

  34. Skourlis T, Duvis T, Papaspyrides CD (1993) Compos Sci Technol 48(1–4):119. doi:10.1016/0266-3538(93)90127-3

    Article  CAS  Google Scholar 

  35. Varelidis PC, McCullough RL, Papaspyrides CD (1999) Compos Sci Technol 59(12):1813. doi:10.1016/S0266-3538(99)00039-1

    Article  CAS  Google Scholar 

  36. Subramanian RV, Jakubowski JJ, Williams FD (1978) J Adhesion 9(3):185. doi:10.1080/00218467808075113

    Article  CAS  Google Scholar 

  37. Dujardin S, Lazzaroni R, Rigo L, Riga J, Verbist JJ (1986) J Mater Sci 21(12):4342. doi:10.1007/BF01106553

    Article  CAS  Google Scholar 

  38. Zinger B, Shkolnik S, Höcke H (1989) Polymer 30(4):628. doi:10.1016/0032-3861(89)90146-8

    Article  CAS  Google Scholar 

  39. Drzal LT (1983) J Adhesion 16(2):133. doi:10.1080/00218468308074911

    Article  CAS  Google Scholar 

  40. Dauksys RJ (1973) J Adhesion 5(3):211. doi:10.1080/00218467308075021

    Article  CAS  Google Scholar 

  41. Naganuma T, Naito K, Yang JM, Kyono J, Sasakura D, Kagawa Y (2009) Compos Sci Technol 69(7–8):1319. doi:10.1016/j.compscitech.2009.03.002

    Article  CAS  Google Scholar 

  42. Naganuma T, Naito K, Yang JM, Kyono J, Sasakura D, Kagawa Y (2009) In: Fielding J, Tate L, Prybla S, Beckwith SW (eds) SAMPE 09 (Changing times-New opportunities-Are you prepared? 54th International SAMPE Symposium, May 19-21, 2009). DEStech Publications, Lancaster

  43. Naganuma T, Naito K, Yang JM (2011) Carbon 49(12):3881. doi:10.1016/j.carbon.2011.05.026

    Article  CAS  Google Scholar 

  44. Kubono A, Higuchi H, Umemoto S, Okui N (1993) Thin Solid Films 232(2):256. doi:10.1016/0040-6090(93)90018-K

    Article  CAS  Google Scholar 

  45. Hatori H, Yamada Y, Shiraishi M, Takahashi Y (1991) Carbon 29(4–5):679. doi:10.1016/0008-6223(91)90138-9

    Article  CAS  Google Scholar 

  46. ASTM C1557–03 (2008) ASTM annual book of standards, vol 15.01. American Society for Testing and Materials, West Conshohocken. doi:10.1520/C1557-03R08

    Google Scholar 

  47. Sung MG, Sassa K, Tagawa T, Miyata T, Ogawa H, Doyama M, Yamada S, Asai S (2002) Carbon 40(11):2013. doi:10.1016/S0008-6223(02)00059-3

    Article  CAS  Google Scholar 

  48. Weibull W (1951) J Appl Mech 18:293

    Google Scholar 

  49. Johnson W (1985) In: Watt W, Perov BV (eds) Strong fibers, vol 1. Elsevier, Amsterdam, p 389

    Google Scholar 

  50. Naito K, Yang JM, Tanaka Y, Kagawa Y (2012) J Mater Sci 47(2):632. doi:10.1007/s10853-011-5832-x

    Article  CAS  Google Scholar 

  51. Naito K, Yang JM, Inoue Y, Fukuda H (2012) J Mater Sci 47(23):8044. doi:10.1007/s10853-012-6694-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS (Japan Society for the Promotion of Science) KAKENHI 22360282 and JST (Japan Science and Technology Agency) through Advanced Low Carbon Technology Research and Development Program (ALCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiyoshi Naito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naito, K. The effect of high-temperature vapor deposition polymerization of polyimide coating on tensile properties of polyacrylonitrile- and pitch-based carbon fibers. J Mater Sci 48, 6056–6064 (2013). https://doi.org/10.1007/s10853-013-7402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7402-x

Keywords

Navigation