Skip to main content
Log in

Tensile properties of polyacrylonitrile- and pitch-based hybrid carbon fiber/polyimide composites with some nanoparticles in the matrix

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile properties and fracture behavior of polyacrylonitrile (PAN)- and pitch-based hybrid carbon fiber/polyimide composites with several types of nanoparticles (25 nm C, 20–30 nm β-SiC, 130 nm β-SiC, 80 nm SiO2, and 300 nm SiO2) added to the matrix were investigated. The tensile stress–strain curves of PAN- and pitch-based hybrid carbon fiber/polyimide composites with 25 nm C, 20–30 nm β-SiC, and 80 nm SiO2 nanoparticles have complex shapes (jagged trace), whereas the tensile response of hybrid carbon fiber/polyimide composites with 130 nm β-SiC and 300 nm SiO2 nanoparticles indicates an instantaneous failure. The stress after the initial failure in hybrid carbon fiber/polyimide composites improves by adding 25 nm C, 20–30 nm β-SiC, and 80 nm SiO2 nanoparticles to the matrix and correlates with the fracture toughness of the polyimide matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. These values were obtained from the producer’s data sheet. The tensile modulus of the T1000GB PAN-based and K13D pitch-based carbon fibers were measured using a single filament tensile test at a gauge length of 25 mm, and they were 291 ± 11 and 940 ± 48 GPa, respectively [14].

  2. This value was obtained from the producer’s data sheet. The specific density of the bulk polyimide without nanoparticles measured via ethanol immersion (ASTM D792) [33] was 1.297 g/cm3 [34].

  3. Producer’s data sheet. The diameters of all nanoparticles were also measured using a high-magnification transmission electron microscope (TEM) (JEM 2000, JEOL) at an operating voltage of 200 kV.

  4. The thickness of individual (T1000GB and K13D) and hybrid carbon fiber/polyimide composites was similar at approximately1.5 mm.

  5. This size is relatively smaller than the distance between each fibers related to the V f = 50 % (the distance between each fibers at V f = 50 % are similar to the diameters of each fiber).

  6. In our previous investigation [34], the natural crack at the tip of a notch was introduced by tapping the fresh blades. The natural cracks at the tip of a notch for a few bulk polyimides with nanoparticles were also produced using fatigue loading to check the procedure (tapping procedure), and G IC of these bulk polyimides was similar to that obtained by tapping cracked bulk polyimides.

References

  1. Fitzer E (1989) Carbon 27(5):621. doi:10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  2. Chand S (2000) J Mater Sci 35(6):1303. doi:10.1023/A:1004780301489

    Article  CAS  Google Scholar 

  3. Bunsell AR, Harris B (1974) Composites 5(4):157. doi:10.1016/0010-4361(74)90107-4

    Article  Google Scholar 

  4. Summerscales J, Short D (1978) Composites 9(3):157. doi:10.1016/0010-4361(78)90341-5

    Article  Google Scholar 

  5. Aveston J, Kelly A (1980) Philos T R Soc A 294(1411):519. doi:10.1098/rsta.1980.0061

    Article  CAS  Google Scholar 

  6. Hayashi T, Koyama K, Yamazaki A, Kihira M (1972) Fukugo Zairyo (composite materials) 1:21

    Google Scholar 

  7. Short D, Summerscales J (1979) Composites 10(4):215. doi:10.1016/0010-4361(79)90022-3

    Article  Google Scholar 

  8. Short D, Summerscales J (1980) Composites 11(1):33. doi:10.1016/0010-4361(80)90019-1

    Article  CAS  Google Scholar 

  9. Hardaker KM, Richardson MOW (1980) Polym-Plast Technol 15(2):169. doi:10.1080/03602558008070011

    Article  CAS  Google Scholar 

  10. Chow TW, Kelly A (1980) Ann Rev Mater Sci 10:229. doi:10.1146/annurev.ms.10.080180.001305

    Article  Google Scholar 

  11. Morgan P (2005) Properties of carbon fibers. In: Morgan P (ed) Carbon fibers and their composites. Taylor, New York, p 791

    Chapter  Google Scholar 

  12. Huang Y, Young RJ (1995) Carbon 33(2):97. doi:10.1016/0008-6223(94)00109-D

    Article  CAS  Google Scholar 

  13. Paris O, Loidl D, Peterlik H (2002) Carbon 40(4):551. doi:10.1016/S0008-6223(01)00139-7

    Article  CAS  Google Scholar 

  14. Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Carbon 46(2):189. doi:10.1016/j.carbon.2007.11.001

    Article  CAS  Google Scholar 

  15. Naito K, Tanaka Y, Yang JM, Kagawa Y (2009) J Am Ceram Soc 92(1):186. doi:10.1111/j.1551-2916.2008.02868.x

    Article  CAS  Google Scholar 

  16. Naito K, Yang JM, Tanaka Y, Kagawa Y (2012) J Mater Sci 47(2):632. doi:10.1007/s10853-011-5832-x

    Article  CAS  Google Scholar 

  17. Landis AL, Lau KSY (1998) In: Goodman SH (ed) Handbook of thermoset plastics, 2nd edn. Noyes, New Jersey, p 302

    Google Scholar 

  18. Sroog CE (1996) In: Ghosh MK, Mittal KL (eds) Polyimides: fundamentals and applications. Dekker, New York, p 1

    Google Scholar 

  19. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Langmuir 23(7):3970. doi:10.1021/la062743p

    Article  CAS  Google Scholar 

  20. Hussain M, Nakahira A, Niihara K (1996) Mater Lett 26(3):185. doi:10.1016/0167-577X(95)00224-3

    Article  CAS  Google Scholar 

  21. Timmerman JF, Hayes BS, Seferis JC (2002) Compos Sci Technol 62(9):1249. doi:10.1016/S0266-3538(02)00063-5

    Article  CAS  Google Scholar 

  22. Siddiqui NA, Woo RSC, Kim JK, Leung CCK, Munir A (2007) Compos Part A-Appl S 38(2):449. doi:10.1016/j.compositesa.2006.03.001

    Article  Google Scholar 

  23. Xu Y, Van Hoa S (2008) Compos Sci Technol 68(3–4):854. doi:10.1016/j.compscitech.2007.08.013

    Article  CAS  Google Scholar 

  24. Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) J Appl Phys 91(9):6034. doi:10.1063/1.1466880

    Article  CAS  Google Scholar 

  25. Yokozeki T, Iwahori Y, Ishiwata S (2007) Compos Part A-Appl S 38(3):917. doi:10.1016/j.compositesa.2006.07.005

    Article  Google Scholar 

  26. Iwahori Y, Ishiwata S, Sumizawa T, Ishikawa T (2005) Compos Part A-Appl S 36(10):1430. doi:10.1016/j.compositesa.2004.11.017

    Article  Google Scholar 

  27. Arai M, Noro Y, Sugimoto K, Endo M (2008) Compos Sci Technol 68(2):516. doi:10.1016/j.compscitech.2007.06.007

    Article  CAS  Google Scholar 

  28. Yang Y, Lu CX, Su XL, Wang XK (2007) J Mater Sci 42(15):6347. doi:10.1007/s10853-006-1198-x

    Article  CAS  Google Scholar 

  29. Cho J, Chen JY, Daniel IM (2007) Scr Mater 56(8):685. doi:10.1016/j.scriptamat.2006.12.038

    Article  CAS  Google Scholar 

  30. Jiang ZY, Zhang H, Zhang Z, Murayama H, Okamoto K (2008) Compos Part A-Appl S 39(11):1762. doi:10.1016/j.compositesa.2008.08.005

    Article  Google Scholar 

  31. Ogasawara T, Ishida Y, Kasai T (2009) Compos Sci Technol 69(11–12):2002. doi:10.1016/j.compscitech.2009.05.003

    Article  CAS  Google Scholar 

  32. MSDS of skybond 703 polyimide resin (1996) Industrial Summit Technology Co., Shenzhen

  33. ASTM D792-08 (2009) In: ASTM annual book of standards, vol 08.01. American Society for Testing and Materials, West Conshohocken. doi:10.1520/D0792-08

  34. Naito K, Yang JM, Kagawa Y (2011) Mat Sci Eng A-Struct 530:357. doi:10.1016/j.msea.2011.09.096

    Article  CAS  Google Scholar 

  35. Zhou YX, Pervin F, Rangari VK, Jeelani S (2006) Mat Sci Eng A-Struct 426(1–2):221. doi:10.1016/j.msea.2006.04.031

    Article  Google Scholar 

  36. ASTM D3171-11 (2011) In: ASTM annual book of standards, vol 15.03. American Society for Testing and Materials, West Conshohocken. doi:10.1520/D3171-11

  37. Saunders RA, Lekakou C, Bader MG (1999) Compos Sci Technol 59(7):933. doi:10.1016/S0266-3538(98)00137-7

    Article  Google Scholar 

  38. Thomason JL (1995) Composites 26(7):467. doi:10.1016/0010-4361(95)96804-F

    Article  CAS  Google Scholar 

  39. Marom G, Fischer S, Tuler FR, Wagner HD (1978) J Mater Sci 13(7):1419. doi:10.1007/BF00553194

    Article  CAS  Google Scholar 

  40. Stevanovic MM, Stecenko TB (1992) J Mater Sci 27(4):941. doi:10.1007/BF01197646

    Article  CAS  Google Scholar 

  41. Yao L, Li WB, Wang N, Li W, Guo X, Qiu YP (2007) J Mater Sci 42(16):6494. doi:10.1007/s10853-007-1534-9

    Article  CAS  Google Scholar 

  42. Kretsis G (1987) Composites 18(1):13. doi:10.1016/0010-4361(87)90003-6

    Article  CAS  Google Scholar 

  43. You YJ, Park YH, Kim HY, Park JS (2007) Comps Struct 80(1):117. doi:10.1016/j.compstruct.2006.04.065

    Article  Google Scholar 

  44. Tada H, Paris PC, Irwin GR (2000) In: Tada H, Paris PC, Irwin GR (eds) The stress analysis of cracks handbook, 3rd edn. The American Society of Mechanical Engineers (ASME), New York, p 487. doi:10.1115/1.801535.fm

  45. Hwang SF, Shen BC (1999) Compos Sci Technol 59(12):1861. doi:10.1016/S0266-3538(99)00047-0

    Article  Google Scholar 

  46. Naito K, Yang JM, Kagawa Y (2012) J Mater Sci 47(6):2743. doi:10.1007/s10853-011-6101-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS (Japan Society for the Promotion of Science) KAKENHI 22360282 and JST (Japan Science and Technology Agency) through Advanced Low Carbon Technology Research and Development Program (ALCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiyoshi Naito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naito, K. Tensile properties of polyacrylonitrile- and pitch-based hybrid carbon fiber/polyimide composites with some nanoparticles in the matrix. J Mater Sci 48, 4163–4176 (2013). https://doi.org/10.1007/s10853-013-7229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7229-5

Keywords

Navigation