Skip to main content
Log in

Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current paper reports the effects of an epoxide-functionalized, silane surface-treated, self-passivated aluminum (Al) nanoparticles on the glass transition, morphology, thermal conductivity, dielectric properties of an epoxy composite. The surface modification of the Al nanoparticles improved the dispersion of the filler, as well as the glass transition temperature, thermal conductivity, and dielectric properties of the epoxy composites. The epoxy/Al nanocomposites showed a dielectric constant transition concentration. The dielectric constant and dissipation factor increased when the Al particle loading exceeded the critical content but gradually decreased with the frequency. The epoxy nanocomposites containing 15 % by weight Al nanoparticles have a high thermal conductivity and a high dielectric constant but a low dissipation factor. The enhancements in the thermal and dielectric properties of the epoxy nanocomposites show potential for future engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang FJ, Li W, Xue MS et al (2011) Composites B 42:87

  2. Zhou WY, Yu DM (2010) J Appl Polym Sci 118:3156

    Article  CAS  Google Scholar 

  3. Dang ZM, Yu YF, Xu HP (2008) Compos Sci Technol 68:68

    Article  Google Scholar 

  4. Popielarz R, Chiang CK (2007) Mater Sci Eng B 139:48

    Article  CAS  Google Scholar 

  5. Huang XY, Jiang PK, Kim CU (2008) Compos Sci Technol 68:2134

    Article  CAS  Google Scholar 

  6. Xu JW, Won CP (2007) Compos A 38:13

    Article  Google Scholar 

  7. Qi L, Lee Burtrand L, Chen S (2005) Adv Mater 17:1777

  8. Shen Y, Lin YH, Nan CW (2007) Adv Mater 19:1418

    Article  CAS  Google Scholar 

  9. Prakash SB, Varma KBR (2007) Compos Sci Technol 67:2363

    Article  CAS  Google Scholar 

  10. Sui G, Jana S, Zhong WH (2008) Acta Mater 56:2381

    Article  CAS  Google Scholar 

  11. Yang SY, Lin WN, Huang YL et al (2011) Carbon 49:793

  12. Cui W, Du FP, Zhao JC et al (2011) Carbon 49:495

  13. Logakis E, Pollatos E, Pandis C et al (2010) Compos Sci Technol 70:328

    Google Scholar 

  14. Deng HY, Wang XY, Chen QY et al (2011) Mater Sci Eng A 528:759

  15. Kim JB, Yi JW, Nam E (2011) Thin Solid Films 519:5050

    Google Scholar 

  16. Kim DW, Lee DH, Kim BK et al (2006) Macromol Rapid Commun 27:1821

    Article  CAS  Google Scholar 

  17. Kim P, Jones SC, Horchkiss PJ et al (2007) Adv Mater 19:1001

    Article  CAS  Google Scholar 

  18. Arbatti M, Shab XB, Cheng ZY (2007) Adv Mater 19:1369

    Article  CAS  Google Scholar 

  19. Zhou WY, Qi SH, An QL (2007) Mater Res Bull 42:1863

    Article  CAS  Google Scholar 

  20. James RG, Yvonne YV, Steven B (2003) Carbon 41:2187

    Article  Google Scholar 

  21. Giuseppe P, Ikuko K (2000) J Eur Ceram Soc 20:1197

    Article  Google Scholar 

  22. Zhou WY, Qi SH, Tu CC (2007) J Appl Polym Sci 104:2478

    Article  CAS  Google Scholar 

  23. Ruth R, Donaldson KY, Hasselman DPH (1992) J Am Ceram Soc 75:2887

    Article  Google Scholar 

  24. Kumlutas D, Ismail H, Tavman M (2003) Compos Sci Technol 63:113

    Article  CAS  Google Scholar 

  25. Samuels RJ, Mathis NE (2001) Electron J Packag 23:272

    Google Scholar 

  26. Ishida H, Rimdusit S (1998) Thermochim Acta 320:177

    Article  CAS  Google Scholar 

  27. Zhou WY (2011) J Mater Sci 45:3883. doi:10.1007/s10853-011-5309-y

    Article  Google Scholar 

  28. Peng WY, Huang XY, Yu JH (2010) Compos A 41:1201

    Article  Google Scholar 

  29. White SR, Mather PT, Smith MJ (2002) Polym Eng Sci 42:51

    Article  CAS  Google Scholar 

  30. Huang XY, Jiang PK, Yin Y (2009) Appl Phys Lett 95:905

    Google Scholar 

  31. Huang XY, Kim CU, Jiang PK et al (2009) J Appl Phys 105:014105

  32. Singha S, Thomas MJ (2008) IEEE Trans Dielectr Insulation 15:12

    Article  CAS  Google Scholar 

  33. Tanaka T, Kozako M, Fuse N (2005) IEEE Trans Dielectr Insulation 12:669

    Article  CAS  Google Scholar 

  34. Tanaka T (2005) IEEE Trans Dielectr Insulation 12:914

    Article  CAS  Google Scholar 

  35. Roy M, Nelson JK, Reed CW (2005) IEEE Trans Dielectr Insulation 12:643

    Google Scholar 

  36. Panwar V, Sachdev VK, Mehr RM (2007) Eur Polym J 43:573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from China Postdoctoral Science Foundation (No. 200801434), the Foundation for Key Program of Ministry of Education, China (212175), and National Science Foundation of China (No. 51073180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Yu, D. Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites. J Mater Sci 48, 7960–7968 (2013). https://doi.org/10.1007/s10853-013-7606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7606-0

Keywords

Navigation