Skip to main content

Advertisement

Log in

An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni:Al laminate composites were fabricated by repeatedly cold-rolling Al and Ni foils that were stacked together with initial thicknesses of 25 and 18 μm, respectively. The rolling process consisted of multiple 50 % thickness reductions wherein the first reduction was followed by cutting, restacking, and rerolling to achieve a total of three, six or nine 50 % thickness reductions. However, some of the laminates also received a more mild series of six 20 % thickness reductions without restacking. An analysis program was written and used to quantify the distribution of layer thicknesses, bilayer thicknesses and local chemistries for the complex laminate microstructures, while also preserving positional information for the constituent layers. The resulting distributions show that while we see no clustering of very large bilayers in any of the composites, the heavily rolled laminates with only 50 % thickness reductions have a higher percentage of very large bilayers, relative to the volume mean bilayer, compared to laminates with the additional 20 % thickness reductions. This phenomenon is attributed to less uniform layer deformation and more layer pinch-off with 50 % thickness reductions compared to the more gradual 20 % thickness reductions. Differential scanning calorimetry was performed on the laminates to determine the exothermic peak temperatures and the total energy released during controlled heating. Peak temperatures correlate with the volume average bilayer thickness, while the energy release correlates with the bilayer thickness distribution. The velocity and maximum temperature of self-propagating reactions were measured for the laminates and were found to vary according to processing conditions but not according to the volume average bilayer thickness. Foils with 20 % thickness reductions have both hotter and faster reactions compared to samples with only 50 % thickness reductions. The distributions of layer thicknesses, bilayer thicknesses, and local chemistries within the laminates are used to predict the maximum temperature during reaction. The velocities of the unsteady reaction propagations, though, could not be predicted effectively, at least with current analytical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Inoue J, Nambu S, Ishimoto Y, Koseki T (2008) Scripta Mater 59:1055

    Article  CAS  Google Scholar 

  2. Severin GE (1980) Body armor laminate. U.S. Patent 519,644

  3. Weihs TP (1998) In: Handbook of thin film process technology. TOP, Bristol

    Google Scholar 

  4. Floro JA (1986) J Vac Sci Technol A Vac Surf Films 4:631

    Article  CAS  Google Scholar 

  5. Gavens AJ, Van Heerden D, Mann AB, Reiss ME, Weihs TP (2000) J Appl Phys 87:1255

    Article  CAS  Google Scholar 

  6. Ma E, Thompson CV, Clevenger LA, Tu KN (1990) J Appl Phys Lett 57:1262

    Article  CAS  Google Scholar 

  7. Anselmi-Tamburini U, Munir ZA (1989) J Appl Phys 66:5039

    Article  CAS  Google Scholar 

  8. Wickersham CE (1988) J Vac Sci Technol A Vac Surf Films 6:1699

    Article  CAS  Google Scholar 

  9. Dyer TS, Munir ZA, Ruth V (1994) Scr Metall Mater 30:1281

    Article  CAS  Google Scholar 

  10. Reiss ME, Esber CM, Van Heerden D, Gavens AJ, Williams ME, Weihs TP (1999) Mater Sci Eng A 261:217

    Article  Google Scholar 

  11. Arzt E (1998) Acta Mater 46:5611

    Article  CAS  Google Scholar 

  12. Li Q, Anderson PM (2005) Acta Mater 53:1121

    Article  CAS  Google Scholar 

  13. Salloum M, Knio OM (2010) Combust Flame 157:288

    Article  CAS  Google Scholar 

  14. Salloum M, Knio OM (2010) Combust Flame 157:436

    Article  CAS  Google Scholar 

  15. Salloum M, Knio OM (2010) Combust Flame 157:1154

    Article  CAS  Google Scholar 

  16. Knepper R, Snyder MR, Fritz G, Fisher K, Knio OM, Weihs TP (2009) J Appl Phys 105:083504

    Article  Google Scholar 

  17. Besnoin E, Cerutti S, Knio OM, Weihs TP (2002) J Appl Phys 92:5474

    Article  CAS  Google Scholar 

  18. Rogachev AS, Grigoryan AÉ, Illarionova EV, Kanel IG, Merzhanov AG, Nosyrev AN, Sachkova NV, Khvesyuk VI, Tsygankov PA (2004) Combust Explos Shock Waves 40:166

    Article  Google Scholar 

  19. Hebert RJ, Perepezko JH (2004) Scripta Mater 50:807

    Article  CAS  Google Scholar 

  20. Sieber H, Wilde G, Perepezko J (1999) J Non-Cryst Solids 250–252:611

    Article  Google Scholar 

  21. Sieber H, Park JS, Weissmüller J, Perepezko JH (2001) Acta Mater 49:1139

    Article  CAS  Google Scholar 

  22. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  23. Eizadjou M, Kazemi Talachi A, Danesh Manesh H, Shakur Shahabi H, Janghorban K (2008) Compos Sci Technol 68:2003

    Article  CAS  Google Scholar 

  24. Mozaffari A, Danesh Manesh H, Janghorban K (2010) J Alloy Compd 489:103

    Article  CAS  Google Scholar 

  25. Qiu X, Liu R, Guo S, Graeter JH, Kecskes L, Wang J (2009) Metall Mater Trans A 40:1541

    Article  Google Scholar 

  26. Dreizin EL (2009) Prog Energy Combust Sci 35:141

    Article  CAS  Google Scholar 

  27. Bazyn T, Glumac N, Krier H, Ward TS, Schoenitz M, Dreizin EL (2007) Combust Sci Technol 179:457

    Article  CAS  Google Scholar 

  28. Badiola C, Schoenitz M, Zhu X, Dreizin EL (2009) J Alloy Compd 488:386

    Article  CAS  Google Scholar 

  29. Stamatis D, Jiang X, Beloni E, Dreizin EL (2010) Propellants Explos Pyrotech 35:260

    Article  CAS  Google Scholar 

  30. Michaelsen C, Barmak K, Weihs TP (1997) J Phys D Appl Phys 30:3167

    Article  CAS  Google Scholar 

  31. Barron SC, Knepper R, Walker N, Weihs TP (2011) J Appl Phys 109:013519

    Article  Google Scholar 

  32. McDonald JP, Hodges VC, Jones ED, Adams DP (2009) Appl Phys Lett 94:034102

    Article  Google Scholar 

  33. Bordeaux F, Yavari R (1990) Z Metallkde 81:130

    CAS  Google Scholar 

  34. Dinda GP, Rösner H, Wilde G (2005) Scripta Mater 52:577

    Article  CAS  Google Scholar 

  35. Mann AB, Gavens AJ, Reiss ME, Van Heerden D, Bao G, Weihs TP (1997) J Appl Phys 82:1178

    Article  CAS  Google Scholar 

  36. Battezzati L, Pappalepore P, Durbiano F, Gallino I (1999) Acta Mater 47:1901

    Article  CAS  Google Scholar 

  37. Boer RF, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) In: Cohesion in metals. Elsevier Ltd, Amsterdam

    Google Scholar 

  38. Armstrong M, Koszykowski R (1990) In: Combustion and plasma synthesis of high-temperature materials. VCH, New York

    Google Scholar 

  39. Du Y (2003) Mater Sci Eng A 363:140

    Article  Google Scholar 

  40. Gunduz IE, Fadenberger K, Kokonou M, Rebholz C, Doumanidis CC, Ando T (2009) J Appl Phys 105:074903

    Article  Google Scholar 

  41. Makino A, Law CK (1992) In: Twenty-fourth symposium on combustion. The Combustion Institute, p 1883

  42. Makino A, Law CK (1995) Combust Flame 101:551

    Article  CAS  Google Scholar 

  43. Law CK (2006) Combust Sci Technol 178:335

    Article  CAS  Google Scholar 

  44. Hardt AP, Phung PV (1973) Combust Flame 21:77

    Article  CAS  Google Scholar 

  45. Atzmon M (1992) Metall Mater Trans A 23:49

    Article  Google Scholar 

  46. Alawieh L, Knio OM, Weihs TP (2011) J Appl Phys 110:013509

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mark Koonz for his help in acquiring the SEM images. This study was supported by the Office of Naval Research through Award N00014-07-1-0740. TPW is an inventor of a related technology that has been licensed by Johns Hopkins University. The terms of this arrangement are being managed by Johns Hopkins University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Stover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stover, A.K., Krywopusk, N.M., Fritz, G.M. et al. An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils. J Mater Sci 48, 5917–5929 (2013). https://doi.org/10.1007/s10853-013-7387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7387-5

Keywords

Navigation