Skip to main content
Log in

Transmission Electron Microscopy Analysis of Mo–W–S–Se Film Sliding Contact Obtained by Using Focused Ion Beam Microscope and In Situ Microtribometer

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To better understand the fundamentals of solid lubrication, microstructural analyses on the wear scar surface and contact interface of Mo–W–S–Se composite films produced by pulsed laser deposition were completed. Focused ion beam (FIB), transmission electron microscopy (TEM), and X-ray energy dispersive spectroscopy were employed to study the cross-sectional microstructure and chemistry of wear scars. In particular, a novel microtribometer was built for in situ tribological measurements within a FIB microscope. The sliding tip was welded in contact to the wear scar surface on the film under load by re-deposition of sputtering materials from the FIB cut of the tip. Using this technique, cross-sectional TEM specimens were prepared precisely at the contact point without tip/film separation. Here, the in situ FIB microtribometer is critically important for retaining the microstructure of lubricant films as formed at the sliding contact interface between the tip and film without separation. It provides the unique ability to stop sliding, section the contact, and reveal microstructural changes to that contact without disrupting the sliding interface. The cross-sectional TEM measurements were performed on the sliding contact interface for both the regions in contact and just past contact, and both the reorientation and recrystallization of lubricant films were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lansdown, A.R.: Molybdenum Disulphide Lubrication. Elsevier, Amsterdam (1999)

    Google Scholar 

  2. Haltner, A.J., Oliver, C.S.: Frictional Properties of Molybdenum Disulphide Films containing Inorganic Sulphide Additives. Nature 188, 308–309 (1960). doi:10.1038/188308a0

    Article  CAS  Google Scholar 

  3. Calhoun, S.F., Meade, F.S., Murphy, G.P., Young, R.L.: Factors affecting performance of resin bonded solid film lubricants. Lubr. Eng. 21, 97–103 (1965)

    CAS  Google Scholar 

  4. Pardee, R.P.: Effect of humidity on low-load frictional properties of a bonded solid film lubricant. ASLE Trans. 15, 130–142 (1972)

    CAS  Google Scholar 

  5. Lavik, M.T., Hubbell, R.D., McConnell, B.D.: Oxide interaction EM dash a concept for improved performance with molybdenum disulfide. Lubr. Eng. 31, 20–22 (1975)

    CAS  Google Scholar 

  6. Stupp, B.C.: Synergistic effects of metals co-sputtered with MoS2. Thin Solid Films 84, 257–266 (1981). doi:10.1016/0040-6090(81)90023-7

    Article  CAS  Google Scholar 

  7. Spalvins, T.: Frictional and morphological properties of Au—MoS2 films sputtered from a compact target. Thin Solid Films 118, 375–384 (1984). doi:10.1016/0040-6090(84)90207-4

    Article  CAS  Google Scholar 

  8. Centers, P.W.: Tribological performance of MoS2 compacts containing MoO3, Sb2O3 OR MoO3 and Sb2O3. Wear 122, 97–102 (1988). doi:10.1016/0043-1648(88)90009-9

    Article  CAS  Google Scholar 

  9. Gardos, M.N.: The synergistic effects of graphite on the friction and wear of MoS2 films in air. Tribol. Trans. 31, 214–227 (1988). doi:10.1080/10402008808981817

    Article  CAS  Google Scholar 

  10. Fleischauer, P.D., Lince, J.R., Bertrand, P.A., Bauer, R.: Electronic structure and lubrication properties of molybdenum disulfide: a qualitative molecular orbital approach. Langmuir 5, 1009–1015 (1989). doi:10.1021/la00088a022

    Article  CAS  Google Scholar 

  11. Klenke, C.J.: Tribological performance of MoS2-B2O3 compacts. Tribol. Int 23, 23–26 (1990). doi:10.1016/0301-679X(90)90068-Z

    Article  CAS  Google Scholar 

  12. Zabinski, J.S., Donley, M.S., Dyhouse, V.J., McDevitt, N.T.: Chemical and tribological characterization of PbO—MoS2 films grown by pulsed laser deposition. Thin Solid Films 214, 156–163 (1992). doi:10.1016/0040-6090(92)90764-3

    Article  CAS  Google Scholar 

  13. Hilton, M.R., Bauer, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., Scholhamer, J.: Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf. Coat. Technol. 53, 13–23 (1992). doi:10.1016/0257-8972(92)90099-V

    Article  CAS  Google Scholar 

  14. Wahl, K.J., Seitzman, L.E., Bolster, R.N., Singer, I.L.: Low-friction, high-endurance, ion-beam-deposited Pb–Mo–S coatings. Surf. Coat. Technol. 73, 152–159 (1995). doi:10.1016/0257-8972(94)02383-2

    Article  CAS  Google Scholar 

  15. Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., McDevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol. Trans. 38, 894–904 (1995). doi:10.1080/10402009508983486

    Article  CAS  Google Scholar 

  16. Teer, D.G., Hampshire, J., Fox, V., Bellido-Gonzalez, V.: The tribological properties of MoS2/metal composite coatings deposited by closed field magnetron sputtering. Surf. Coat. Technol. 94–95, 572–577 (1997). doi:10.1016/S0257-8972(97)00498-2

    Article  Google Scholar 

  17. Simmonds, M.C., Savan, A., Pfluger, E., Van Swygenhoven, H.: Mechanical and tribological performance of MoS2 co-sputtered composites. Surf. Coat. Technol. 126, 15–24 (2000). doi:10.1016/S0257-8972(00)00521-1

    Article  CAS  Google Scholar 

  18. Savan, A., Haefke, H., Simmonds, M.C., Constable, C.P.: Microstructure, chemistry, and tribological performance of MoS x /WSe y co-sputtered composites. J. Vac. Sci. Technol. A 20, 1682–1689 (2002). doi:10.1116/1.1497990

    Article  CAS  Google Scholar 

  19. Watanabe, S., Noshiro, J., Miyake, S.: Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004). doi:10.1016/j.surfcoat.2003.09.063

    Article  CAS  Google Scholar 

  20. Hu, J.J., Zabinski, J.S., Bultman, J.E., Sanders, J.H., Voevodin, A.A.: Structure characterization of pulsed laser deposited MoS x –WSe y composite films of tribological interests. Tribol. Lett. 24, 127–135 (2006). doi:10.1007/s11249-006-9063-2

    Article  CAS  Google Scholar 

  21. Buck, V.: Morphological properties of sputtered MoS2 films. Wear 91, 281–288 (1983). doi:10.1016/0043-1648(83)90073-X

    Article  CAS  Google Scholar 

  22. Dimigen, H., Hubsch, H., Willich, P., Reichelt, K.: Stoichiometry and friction properties of sputtered MoS x layers. Thin Solid Films 129, 79–91 (1985). doi:10.1016/0040-6090(85)90097-5

    Article  CAS  Google Scholar 

  23. Muller, C., Menoud, C., Maillat, M., Hintermann, H.E.: Thick compact MoS2 coatings. Surf. Coat. Technol. 36, 351–359 (1988). doi:10.1016/0257-8972(88)90165-X

    Article  Google Scholar 

  24. Moser, J., Levy, F.: MoS2−x lubricating films: structure and wear mechanisms investigated by cross-sectional transmission electron microscopy. Thin Solid Films 228, 257–260 (1993). doi:10.1016/0040-6090(93)90611-R

    Article  CAS  Google Scholar 

  25. Grosseau-Poussard, J.L., Garem, H., Moine, P.: High resolution transmission electron microscopy study of quasi-amorphous MoS x coatings. Surf. Coat. Technol. 78, 19–25 (1996). doi:10.1016/0257-8972(94)02389-1

    Article  CAS  Google Scholar 

  26. Regula, M., Ballif, C., Moser, J.H., Levy, F.: Structural, chemical, and electrical characterization of reactively sputtered WS x thin films. Thin Solid Films 280, 67–75 (1996). doi:10.1016/0040-6090(95)08206-9

    Article  CAS  Google Scholar 

  27. Lauwerens, W., Wang, J., Navratil, J., Wieers, E., D’haen, J., Stals, L.M., Celis, J.P., Bruynseraede, Y.: Humidity resistant MoS x films prepared by pulsed magnetron sputtering. Surf. Coat. Technol. 131, 216–221 (2000). doi:10.1016/S0257-8972(00)00796-9

    Article  CAS  Google Scholar 

  28. Donley, M.S., Murray, P.T., Barber, S.A., Haas, T.W.: Deposition and properties of MoS2 thin films grown by pulsed laser evaporation. Surf. Coat. Technol. 36, 329–340 (1988). doi:10.1016/0257-8972(88)90163-6

    Article  CAS  Google Scholar 

  29. Zabinski, J.S., Donley, M.S., John, P.J., Dyhouse, V.J., Safriet, A.J., McDevitt, N.T.: Crystallization of molybdenum disulfide films deposited by pulsed laser ablation. Mater. Res. Soc. Symp. Proc. 201, 195–200 (1991)

    CAS  Google Scholar 

  30. Fominskii, V.Y., Markeev, A.M., Nevolin, V.N.: Pulsed ion beams for modification of metal surface properties. Vacuum 42, 73–74 (1991). doi:10.1016/0042-207X(91)90081-S

    Article  CAS  Google Scholar 

  31. Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230, 175–183 (1999). doi:10.1016/S0043-1648(99)00100-3

    Article  CAS  Google Scholar 

  32. Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films. Tribol. Lett. 23, 155–163 (2006). doi:10.1007/s11249-006-9057-0

    Article  CAS  Google Scholar 

  33. Hu, J.J., Bultman, J.E., Zabinski, J.S.: Microstructure and lubrication mechanism of multilayered MoS2/Sb2O3 thin films. Tribol. Lett. 21, 169–174 (2006). doi:10.1007/s11249-006-9035-6

    Article  Google Scholar 

  34. Glaeser, W.A.: Wear experiments in the scanning electron microscope. Wear 73, 371–386 (1981). doi:10.1016/0043-1648(81)90301-X

    Article  CAS  Google Scholar 

  35. Lim, S.C., Brunton, J.H.: A dynamic wear rig for the scanning electron microscope. Wear 101, 81–91 (1985). doi:10.1016/0043-1648(85)90213-3

    Article  Google Scholar 

  36. Kayaba, T., Hokkirigawa, K., Kato, K.: Analysis of the abrasive wear mechanism by successive observations of wear processes in a scanning electron microscope. Wear 110, 419–430 (1986). doi:10.1016/0043-1648(86)90115-8

    Article  Google Scholar 

  37. Gohar, R., Cameron, A.: Mapping of elastohydrodynamic contacts. ASLE Trans. 10, 215–225 (1967)

    Google Scholar 

  38. Sliney, H.E.: Dynamics of solid lubrication as observed by optical microscopy. ASLE Trans. 21, 109–117 (1978)

    CAS  Google Scholar 

  39. Miyoshi, K., Buckley, D.H.: Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals. ASLE Trans. 22, 245–256 (1979)

    CAS  Google Scholar 

  40. Pope, L.E., Peebles, D.E.: In situ friction, wear and electrical contact resistance of precious metal alloys. Tribol. Trans. 31, 202–213 (1988). doi:10.1080/10402008808981816

    Article  CAS  Google Scholar 

  41. DeKoven, B.M., Meyers, G.F.: Friction studies in ultrahigh vacuum of Fe surfaces with thin films from exposure to perfluorodiethylether. J. Vac. Sci. Technol. A 9, 2570–2577 (1991). doi:10.1116/1.577275

    Article  CAS  Google Scholar 

  42. Martin, J.M., le Mogne, Th.: Interpretation of friction and wear of ceramics in terms of surface analysis. Surf. Coat. Technol. 49, 427–434 (1991). doi:10.1016/0257-8972(91)90095-E

    Article  CAS  Google Scholar 

  43. Kennedy Jr, F.E.: Thermal and thermomechanical effects in dry sliding. Wear 100, 453–476 (1984). doi:10.1016/0043-1648(84)90026-7

    Article  CAS  Google Scholar 

  44. Belin, M., Martin, J.M.: Triboscopy, a new approach to surface degradations of thin films. Wear 156, 151–160 (1992). doi:10.1016/0043-1648(92)90150-7

    Article  CAS  Google Scholar 

  45. Olsen, J.E., Fischer, T.E., Gallois, B.: In situ analysis of the tribochemical reactions of diamond-like carbon by internal reflection spectroscopy. Wear 200, 233–237 (1996). doi:10.1016/S0043-1648(96)07295-X

    Article  CAS  Google Scholar 

  46. Cheong, U.C., Stair, P.C.: In situ study of multialkylated cyclopentane and perfluoropolyalkyl ether chemistry in concentrated contacts using ultraviolet Raman spectroscopy. Tribol. Lett. 4, 163–170 (1998). doi:10.1023/A:1019147020100

    Article  Google Scholar 

  47. Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol. A 21, S232–S240 (2003). doi:10.1116/1.1599869

    Article  CAS  Google Scholar 

  48. Hilton, M.R., Bauer, R., Fleischauer, P.D.: Tribological performance and deformation of sputter-deposited MoS2 solid lubricant films during sliding wear and indentation contact. Thin Solid Films 188, 219–236 (1992). doi:10.1016/0040-6090(90)90285-L

    Article  Google Scholar 

Download references

Acknowledgments

The Air Force Office of Scientific Research (AFOSR) is gratefully acknowledged for financial support. Thanks to A.J. Safriet and J.E. Bultman for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J.J., Wheeler, R., Zabinski, J.S. et al. Transmission Electron Microscopy Analysis of Mo–W–S–Se Film Sliding Contact Obtained by Using Focused Ion Beam Microscope and In Situ Microtribometer. Tribol Lett 32, 49–57 (2008). https://doi.org/10.1007/s11249-008-9360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9360-z

Keywords

Navigation