Skip to main content
Log in

Solution-based synthesis of AgI coatings for low-friction applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin films of AgI have been synthesized from Ag surfaces and elemental I2 using a rapid and simple solution-based method. The effect of using ultrasound during the synthesis was studied, as well as the influence of the nature of the solvent, the I2 concentration, the time, the temperature, and the sonication power. The films were characterized using X-ray diffraction, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy, and found to consist of β-AgI, possibly along with some γ-AgI. It was found that sonication increases the film thickness and grain size. The nature of the solvent has a profound effect on the film growth, with mixtures of water and ethanol leading to thicker coatings than films synthesized using either component in its pure form. Selected coatings were tribologically tested, and the AgI coating was seen to lower the friction coefficient significantly compared to a reference Ag surface under otherwise identical conditions. Long lifetimes (over 30000 cycles) were seen against a Ag counter surface. Tracks and wear scars were studied using SEM and Raman spectroscopy, and it was found that the friction level remains low as long as there is AgI in the points of contact. This method is found to be a simple and fast way to deposit AgI on Ag with large possibilities of tuning the thickness and grains sizes of the resulting films, thereby optimizing it for the desired use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arnell S, Andersson G (2001) In: Proceedings of the forty-seventh IEEE Holm conference on electrical contacts p 239

  2. Arnell S, Stridh B (2003) Electrical contact element and use of the contact element. vol US 6,565,983 BI. ABB AB, Västerås (SE)

  3. Lauridsen J, Eklund P, Lu J, Knutsson A, Oden M, Mannerbro R, Andersson AM, Hultman L (2012) Tribol Lett 46(2):187. doi:10.1007/s11249-012-9938-3

    Article  CAS  Google Scholar 

  4. Guo Y-G, Hu Y-S, Lee J-S, Maier J (2006) Electrochem Commun 8(7):1179

    Article  CAS  Google Scholar 

  5. Kaushik R, Hariharan K (1988) Solid State Ionics 28-30, Part 1 (0):732

  6. Buck RP (1968) Anal Chem 40(10):1432. doi:10.1021/ac60266a023

    Article  CAS  Google Scholar 

  7. James D, Rao TP (2012) Potentiometric sensing of iodide using polymeric membranes of microwave stabilized β-AgI. Electrochim Acta 66:340

    Article  CAS  Google Scholar 

  8. Smyth DM, Cutler M (1959) J Electrochem Soc 106(2):107. doi:10.1149/1.2427277

    Article  CAS  Google Scholar 

  9. Shiojiri M, Hasegawa Y, Konishi K (1973) J Appl Phys 44(7):2996

    Article  CAS  Google Scholar 

  10. Bose SK, Sircar SC (1976) J Mater Sci 11(1):129. doi:10.1007/bf00541084

    Article  CAS  Google Scholar 

  11. Zheng Z, Liu AR, Wang SM, Huang BJ, Ma XM, Zhao HX, Li DP, Zhang LZ (2008) Mater Res Bull 43(8–9):2491

    Article  CAS  Google Scholar 

  12. Zheng Z, Liu AR, Wang SM, Huang BJ, Wong KW, Zhang XT, Hark SK, Lau WM (2008) J Mater Chem 18(8):852. doi:10.1039/b719452h

    Article  CAS  Google Scholar 

  13. Huang B, Zheng Z, Yang F, Zhang Y, Pu D, Zhao H, Li D (2008) Solid State Ionics 179(35–36):2006

    Article  CAS  Google Scholar 

  14. Suslick KS, Gawienowski JJ, Schubert PF, Wang HH (1984) Ultrasonics 22(1):33. doi:10.1016/0041-624x(84)90059-3

    Article  CAS  Google Scholar 

  15. Suslick KS (1990) Science 247(4949):1439. doi:10.1126/science.247.4949.1439

    Article  CAS  Google Scholar 

  16. Suslick KS (1989) Sci Am 260(2):80

    Article  CAS  Google Scholar 

  17. Natl. Bur. Stand. (U.S.) C, 51 (1959) Natl. Bur. Stand. (U.S.), Circ. 539 8, 51

  18. Natl. Bur. Stand. (U.S.) C, 48 (1960) Natl. Bur. Stand. (U.S.), Circ 539 9, 48

  19. Chastain J, King RC (eds) (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc, Eden Prairie

    Google Scholar 

  20. Kuiry SC, Roy SK, Bose SK (1997) Metall Mater Trans B-Proc Metall Mater Proc Sci 28(6):1189. doi:10.1007/s11663-997-0075-6

    Article  Google Scholar 

  21. Mikhailov VA, Grigor’eva ÉF, Semina II (1969) J Struct Chem 9(6):855. doi:10.1007/bf00744379

    Article  Google Scholar 

  22. Senthil Kumar P, Sunandana CS (1998) Thin Solid Films 323(1–2):110

    Article  CAS  Google Scholar 

  23. Sáfrán G, Geszti O, Radnóczi G, Barna PB, Tóth K (1995) Thin Solid Films 259(1):96

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the InnoEnergy Knowledge & Innovation Community, the Swedish Foundation for Strategic Research (within the project “Technical advancement through controlled tribofilms”), and Vinnova Designed Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Sundberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundberg, J., Mao, F., Andersson, A.M. et al. Solution-based synthesis of AgI coatings for low-friction applications. J Mater Sci 48, 2236–2244 (2013). https://doi.org/10.1007/s10853-012-6999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6999-5

Keywords

Navigation