Skip to main content
Log in

Thermoelectric measurements of PEDOT:PSS/expanded graphite composites

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/expanded graphite films were cast as thin films with different expanded graphite contents at room temperature. The thermoelectric properties of the composites were investigated as a function of the graphite concentration. The electrical conductivity and Seebeck coefficient were measured as a function of the graphite concentration. The electrical conductivity and power factor show similar trends with a sharp increase at around 55 wt% of expanded graphite content. The Seebeck coefficient does not show a significant dependence with the graphite content. SEM and TEM images indicate a nearly homogenous distribution of the filler in the matrix. The initial thermal stability is not modified with the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johansson TB, Turkenburg W (2004) Energy Sustain Dev 8:5

    Article  Google Scholar 

  2. Wang W, Huang Q, Jia F, Zhu J (2004) J Appl Phys 96:615

    Article  CAS  Google Scholar 

  3. Freik DM, Dykun MI, Boryk VV (2010) J Thermoelectr 2:67

    Google Scholar 

  4. Snyder GJ, Toberer ES (2008) Nat Mater 7(2):105

    Article  CAS  Google Scholar 

  5. Hicks LD, Dresselhaus MS (1993) Phys Rev B 47(19):12727

    Article  CAS  Google Scholar 

  6. Uber TE, Owusu K, Johnson S, Nikolawa A, Konopko L, Johnson RC, Graf MJ (2012) J Appl Phys 111(4):043705

    Article  Google Scholar 

  7. Sallemi M, Toprak MS, Li S, Johnsson M, Mamoun M (2012) J Mater Chem 22(2):725

    Article  Google Scholar 

  8. Semizorov AF, Moiseev GB (1997) J Thermoelectr 3:37

    Google Scholar 

  9. Hasapis THC, Girard SN, Hatzikraniotis E, Paraskevopoulos KM, Kanatzidis MG (2012) J Nano Res 17:165

    Article  CAS  Google Scholar 

  10. Stein N, Peterman N, Theissmann R, Schierning G, Schmechel R, Wiggers H (2011) J Mater Res 26(15):1872

    Article  CAS  Google Scholar 

  11. Boukai AJ, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA III, Heath JR (2008) Nature 451:168

    Article  CAS  Google Scholar 

  12. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578

    Article  Google Scholar 

  13. Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA (2004) Chem Mater 16(23):4556

    Article  CAS  Google Scholar 

  14. Ho HA, Aberem MB, Leclerc M (2005) Chem Euro J 11(6):1718

    Article  CAS  Google Scholar 

  15. Coakley KM, McGehee MD (2004) Chem Mater 16(23):4533

    Article  CAS  Google Scholar 

  16. Jiang F-X, Xu J-K, Lu B-Y, Xie Y, Huang R-J, Li L-F (2008) Chin Phys Lett 25(6):2202

    Article  CAS  Google Scholar 

  17. Kim D, Kim Y, Choi K, Grunlan JG, Yu C (2010) ACS Nano 4:513

    Article  CAS  Google Scholar 

  18. Yu C, Choi K, Yin L, Grunlan JG (2011) ACS Nano 5:7885

    Article  CAS  Google Scholar 

  19. Dhakate SR, Sharma S, Borah M, Mathur RB, Dhami TL (2008) Int J Hydrogen Energy 33:7146

    Article  CAS  Google Scholar 

  20. Konwer S, Maiti J, Dolui SK (2011) Mater Chem Phys 128:283

    Article  CAS  Google Scholar 

  21. Celzard A, Marêché JF, Furdin G, Puricelli S (2000) J Phys D Appl Phys 33(23):3094

    Article  CAS  Google Scholar 

  22. Feng M, Wang K, Lu H, Yang Y, Natl S (2009) J Mater Chem 19:7098

    Article  Google Scholar 

  23. Cai D, Yousoh K, Song M (2009) Nanotechnology 20:085712

    Article  Google Scholar 

  24. Van Der Pauw LJ (1958) Philips Res Rep 13:1

    Google Scholar 

  25. Yin H-E, Wu Ch-H, Kuo K-S, Chiu W-Y, Tai H-J (2012) J Mater Chem 22:3800

    Article  CAS  Google Scholar 

  26. Zhang X, Li Ch, Luo Y (2010) Langmuir 27(5):1915

    Article  Google Scholar 

  27. Elschner A, Kirchemeyer S, Lövenich W, Merke U, Reuter K (2011) PEDOT principles and applications of an intrinsically conductive polymer. CRC Press, Taylor & Francis, London

    Google Scholar 

  28. Svoboda P, Theravalappil R, Poongavalappil S, Vilcakova J, Svobodova D, Mokrejs P, Antonin B (2012) Polym Eng Sci 52:1241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Innovation of Spain for financial support through Grant CSD2010-00044 of the Programme “Consolider Ingenio 2010.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Cantarero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culebras, M., Gómez, C.M. & Cantarero, A. Thermoelectric measurements of PEDOT:PSS/expanded graphite composites. J Mater Sci 48, 2855–2860 (2013). https://doi.org/10.1007/s10853-012-6846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6846-8

Keywords

Navigation