Skip to main content
Log in

Plasma treatment as a method for functionalising and improving dispersion of carbon nanotubes in epoxy resins

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study reports on the results of plasma-treated carbon nanotubes (CNTs) in the presence of oxygen and ammonia which can be scaled up for relatively large quantities of nanomaterials. The plasma treatment has been shown to change the surface chemistry and energy as well as the morphology of the carbon nanotubes. X-ray photoelectron spectroscopy analysis shows increases in oxygen and nitrogen groups on the oxygen- and ammonia-treated CNTs, respectively. Titration of the enhanced oxygen plasma-treated CNTs reveals an increased presence of carboxylic acid groups at 2.97 wt% whilst bulk density decreases from 151 kg/m3 for untreated carbon nanotubes to 76 kg/m3 after the enhanced oxygen treatment. The free surface energy has also been shown to increase from 33.70 up to 53.72 mJ/m2 determined using a capillary rise technique. The plasma-treated carbon nanotubes have been mixed in epoxy and have shown an improvement in dispersion, which was quantitatively evaluated using an optical coherence tomography (OCT) technique shown to be suitable for nanocomposite characterisation. This research has demonstrated that it is possible to surface functionalise large quantities of carbon nanotubes in a single process, and that this process improves the dispersion of the carbon nanotubes in epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Compos Sci Technol 65(1516):2300. doi:10.1016/j.compscitech.2005.04.021

    Article  CAS  Google Scholar 

  2. Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Nanotechnology 17(6):1551. doi:10.1088/0957-4484/17/6/003

    Article  CAS  Google Scholar 

  3. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Nano Lett 3(8):1107. doi:10.1021/nl0342489

    Article  CAS  Google Scholar 

  4. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Compos Part A 41(10):1345. doi:10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  5. Kim SD, Kim JW, Im JS, Kim YH, Lee YS (2007) J Fluorine Chem 128(1):60. doi:10.1016/j.jfluchem.2006.10.010

    Article  CAS  Google Scholar 

  6. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Carbon 43(1):23. doi:10.1016/j.carbon.2004.08.015

    Article  Google Scholar 

  7. Hirsch A (2002) Angew Chem Int Ed 41(11):1853. doi:10.1002/1521-3773(20020603)41:111853::AID-ANIE18533.0.CO;2-N

    Article  CAS  Google Scholar 

  8. Liu H, Cheng G, Zheng R, Zhao Y, Liang C (2005) J Mol Catal A 230(12):17. doi:10.1016/j.molcata.2004.12.003

    CAS  Google Scholar 

  9. Tkalya EE, Ghislandi M, de~With G, Koning CE (2012) Curr Opin Colloid Interface Sci 17(4): 225. doi:10.1016/j.cocis.2012.03.001

  10. Kim KH, Jo WH (2008) Compos Sci Technol 68(9):2120. doi:10.1016/j.compscitech.2008.03.008

    Article  CAS  Google Scholar 

  11. Loos M, Yang J, Feke D, Manas-Zloczower I (2012) Compos Sci Technol 72(4):482. doi:10.1016/j.compscitech.2011.11.034

    Article  CAS  Google Scholar 

  12. Haggenmueller R, Rahatekar SS, Fagan JA, Chun J, Becker ML, Naik RR, Krauss T, Carlson L, Kadla JF, Trulove PC, Fox DF, DeLong HC, Fang Z, Kelley SO, Gilman JW (2008) Langmuir 24(9):5070. doi:http://pubs.acs.org/doi/abs/10.1021/la703008r.PMID:18442227

    Google Scholar 

  13. Wallace EJ, Sansom MSP (2009) Nanotechnology 20(4):045101. doi:10.1088/0957-4484/20/4/045101

    Article  Google Scholar 

  14. Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Chem Mater 12(4):1049. doi:10.1021/cm9906396

    Article  CAS  Google Scholar 

  15. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Nano Lett 3(10):1379. doi:10.1021/nl034524j

    Article  CAS  Google Scholar 

  16. Krause B, Petzold G, Pegel S, Potschke P (2009) Carbon 47(3):602. doi:10.1016/j.carbon.2008.10.040

    Article  CAS  Google Scholar 

  17. Vaisman L, Wagner HD, Marom G (2006) Adv Colloid Interface Sci 128–130:37. doi:10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  18. Rastogi R, Kaushal R, Tripathi S, Sharma AL, Kaur I, Bharadwaj LM (2008) J Colloid Interface Sci 328(2):421. doi:10.1016/j.jcis.2008.09.015

    Article  CAS  Google Scholar 

  19. Wang H, Zhou W, Ho DL, Winey KI, Fischer JE, Glinka CJ, Hobbie EK (2004) Nano Lett 4(9):1789. doi:10.1021/nl048969z

    Article  CAS  Google Scholar 

  20. Felten A, Bittencourt C, Pireaux JJ, Lier GV, Charlier JC (2005) J Appl Phys 98(7):074308. doi:10.1063/1.2071455

    Article  Google Scholar 

  21. Ruelle B, Peeterbroeck S, Gouttebaron R, Godfroid T, Monteverde F, Dauchot JP, Alexandre M, Hecq M, Dubois P (2007) J Mater Chem 17:157. doi:10.1039/B613581C

    Article  CAS  Google Scholar 

  22. Valentini L, Puglia D, Armentano I, Kenny J (2005) Chem Phys Lett 403(46):385. doi:10.1016/j.cplett.2005.01.042

    Article  CAS  Google Scholar 

  23. Grasley ZC, Yazdanbakhsh A (2011) Compos Part A 42(12):2043. doi:10.1016/j.compositesa.2011.09.011

    Article  Google Scholar 

  24. Tyson BM, Al-Rub RKA, Yazdanbakhsh A, Grasley Z (2011) Compos Part B 42(6):1395. doi:10.1016/j.compositesb.2011.05.020

    Article  Google Scholar 

  25. Sul IH, Youn JR, Song YS (2011) Carbon 49(4):1473. doi:10.1016/j.carbon.2010.12.017

    Article  CAS  Google Scholar 

  26. Koukoulas T, Broughton WR, Tedaldi M, Theobald PD (2011) Opt Meas Syst Indus Insp VII. doi:10.1117/12.889190

  27. Siebold A, Walliser A, Nardin M, Oppliger M, Schultz J (1997) J Colloid Interface Sci 186(1):60. doi:10.1006/jcis.1996.4640

    Article  CAS  Google Scholar 

  28. Shen Q, Mezgebe M, Li F, Dong JQ (2011) Colloids Surf A 390(13):212. doi:10.1016/j.colsurfa.2011.09.030

    Article  CAS  Google Scholar 

  29. Mezgebe M, Shen Q, Zhang JY, Zhao YW (2012) Colloids Surf A 403(0):25. doi:10.1016/j.colsurfa.2012.03.045

    Article  CAS  Google Scholar 

  30. Jackson P, Hunt J, Doherty P, Cannon A, Gilson P (2004) J Mater Sci: Mater Med 15:507. doi:10.1023/B:JMSM.0000021129.60818.ca

    Article  CAS  Google Scholar 

  31. Washburn EW (1921) Phys Rev 17:273. doi:http://link.aps.org/doi/10.1103/PhysRev.17.273

  32. Timmermans J (1950) In: Physico chemical constants of pure organic compounds. Elsevier, New York

    Google Scholar 

  33. Zenkiewicz M (2007) J Achiev Mater Manuf Eng 24:137

    Google Scholar 

  34. Fowkes FM (1964) Indus Eng Chem 56(12):40. doi:http://pubs.acs.org/doi/abs/10.1021/ie50660a008

  35. Kukovecz A, Kanyo T, Konya Z, Kiricsi I (2005) Carbon 43(5):994. doi:10.1016/j.carbon.2004.11.030

    Article  CAS  Google Scholar 

  36. Kim Y, Hayashi T, Fukai Y, Endo M, Yanagisawa T, Dresselhaus M (2002) Chem Phys Lett 355(34):279. doi:10.1016/S0009-2614(02)00248-8

    Article  CAS  Google Scholar 

  37. Zapata-Massot C, Bolay NL (2008) Chem Eng Proc 47(8):1350. doi:10.1016/j.cep.2007.05.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) for supporting the Advanced Composites Centre for Innovation and Science (ACCIS) Doctoral Training Centre (DTC), grant number EP/G036772/1. We would also like to thank the Bristol Centre for Nanoscience and Quantum Information (NSQI) for the use of their specialist facilities in regards to handling and processing of the carbon nanotubes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Rahatekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J., Broughton, W., Koukoulas, T. et al. Plasma treatment as a method for functionalising and improving dispersion of carbon nanotubes in epoxy resins. J Mater Sci 48, 1005–1013 (2013). https://doi.org/10.1007/s10853-012-6830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6830-3

Keywords

Navigation