Skip to main content
Log in

The effect of carbon nanotubes loading and processing parameters on the electrical, mechanical, and viscoelastic properties of epoxy-based composites

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study investigates effects of compositional variations and processing parameters such as ultrasonication time, carbon nanotube (CNT) content, and functionalization of CNT on the rheological, electrical, mechanical, and viscoelastic properties of epoxy-based composites filled with carbon nanomaterials. Expanded graphite (EG) was also used as a filler material into epoxy matrix to understand the effect of geometric features of carbon filler on the physical properties of epoxy. The effect of the void content and the agglomeration size with respect to CNT content, dispersion level, functionalization and the surface area on the composite properties has been investigated. Percolation threshold of CNT was found to be 0.1 wt% based on both rheological analysis and electrical conductivity measurements. High power and long-time ultrasonication have been found to have a detrimental effect on both the electrical and flexural properties due to breaking in CNT lengths. The electrical conductivity of composites was enhanced with the higher CNT loading but yielded bigger agglomerations. Computer tomography (CT) images were taken to visualize the void content of epoxy nanocomposites. ImageJ program was implemented to determine the void percentage from the CT images. Increase in resin viscosity resulted in higher void content in composites. Both the void content and the agglomerates possessed a negative impact on the mechanical and viscoelastic properties. EG-filled nanocomposites exhibited lower electrical conductivity than both the pristine CNT and functionalized CNT (f-CNT) reinforced epoxy nanocomposites. Three-point bending tests revealed that all type of nanoparticles (CNT, f-CNT, and EG) increased the flexural strength and strain compared to the neat epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig.22
Fig.23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A Appl Sci Manuf 42:2126–2142. https://doi.org/10.1016/j.compositesa.2011.08.005

    Article  Google Scholar 

  2. Okoro CU, Hossain MK, Hosur MV, Jeelani S (2011) Mechanical characterization of XD-grade carbon nanotube/epon 862 processed by dual phase dispersion technique. J Eng Mater Technol Trans ASME 133:24–27. https://doi.org/10.1115/1.4004692

    Article  Google Scholar 

  3. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos Part A Appl Sci Manuf 34:689–694. https://doi.org/10.1016/S1359-835X(03)00140-4

    Article  Google Scholar 

  4. Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Design 31:4202–4208. https://doi.org/10.1016/j.matdes.2010.04.018

    Article  Google Scholar 

  5. Hülagü B, Acar V, Aydın MR, Aydın OA, Gök S, Ünal HY et al (2021) Experimental modal analysis of graphene nanoparticle-reinforced adhesively bonded double strap joints. J Adhes 97:1107–1135. https://doi.org/10.1080/00218464.2020.1734793

    Article  Google Scholar 

  6. Wang Z, Soutis C, Gresil M (2021) Fracture toughness of hybrid carbon fibre/epoxy enhanced by graphene and carbon nanotubes. Appl Compos Mater 28:1111–1125. https://doi.org/10.1007/s10443-021-09906-x

    Article  Google Scholar 

  7. Thostenson ET, Chou TW (2008) Carbon nanotube-based health monitoring of mechanically fastened composite joints. Compos Sci Technol 68:2557–2561. https://doi.org/10.1016/j.compscitech.2008.05.016

    Article  Google Scholar 

  8. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385. https://doi.org/10.1016/j.carbon.2005.01.007

    Article  Google Scholar 

  9. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215. https://doi.org/10.1002/adfm.200700065

    Article  Google Scholar 

  10. Wu N, Hu Q, Wei R, Mai X, Naik N, Pan D et al (2021) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176:88–105. https://doi.org/10.1016/j.carbon.2021.01.124

    Article  Google Scholar 

  11. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680. https://doi.org/10.1038/381678a0

    Article  Google Scholar 

  12. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640. https://doi.org/10.1126/science.287.5453.637

    Article  Google Scholar 

  13. Ebbesen T, Ajayan P (1992) Large-scale synthesis of carbon nanotubes. Lett Nat 358:220–222

    Article  Google Scholar 

  14. Maeng J, Jo G, Kim TW, Lee T (2006) Electrical transport properties of VO2 nanowire field effect transistors. Nano Brief Rep Rev 1:1–13. https://doi.org/10.1109/NMDC.2006.4388824

    Article  Google Scholar 

  15. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  16. Chakraborty AK, Plyhm T, Barbezat M, Necola A, Terrasi GP (2011) Carbon nanotube (CNT)-epoxy nanocomposites: a systematic investigation of CNT dispersion. J Nanoparticle Res 13:6493–6506. https://doi.org/10.1007/s11051-011-0552-3

    Article  Google Scholar 

  17. Thakur RK, Singh KK (2021) Influence of fillers on polymeric composite during conventional machining processes: a review. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-021-02813-z

    Article  Google Scholar 

  18. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM et al (2021) Mechanical performance and applications of cnts reinforced polymer composites—a review. Nanomaterials. https://doi.org/10.3390/nano11092186

    Article  Google Scholar 

  19. Hirsch A, Vostrowsky O, Chemie O, Erlangen-nürnberg U (2005) Functionalization of carbon nanotubes, pp 193–237. https://doi.org/10.1007/b98169

  20. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small. https://doi.org/10.1002/smll.200400118

    Article  Google Scholar 

  21. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res. https://doi.org/10.1021/ar010160v

    Article  Google Scholar 

  22. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon. https://doi.org/10.1016/j.carbon.2004.08.015

    Article  Google Scholar 

  23. Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V et al (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon. https://doi.org/10.1016/j.carbon.2011.01.017

    Article  Google Scholar 

  24. Kathi J, Rhee K, Hee J (2009) Composites : part a effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos Part A 40:800–809. https://doi.org/10.1016/j.compositesa.2009.04.001

    Article  Google Scholar 

  25. Hameed A, Islam M, Ahmad I, Mahmood N, Saeed S, Javed H (2015) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym Compos. https://doi.org/10.1002/pc.23097

    Article  Google Scholar 

  26. Cha J, Kim J, Ryu S, Hong SH (2019) Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2018.11.011

    Article  Google Scholar 

  27. Liu Y, Rajadas A, Chattopadhyay A (2012) A biomimetic structural health monitoring approach using carbon nanotubes. Jom 64:802–807. https://doi.org/10.1007/s11837-012-0357-6

    Article  Google Scholar 

  28. Kumar M, Bhowmik S, Balachandran M, Abraham M (2016) Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos A 90:147–160. https://doi.org/10.1016/j.compositesa.2016.06.025

    Article  Google Scholar 

  29. Kumar A, Sharma K, Rai A (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  30. Sánchez M, Campo M, Ureña A (2013) Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber / epoxy composites manufactured by VARIM. Compos Part B 45:1613–1619. https://doi.org/10.1016/j.compositesb.2012.09.063

    Article  Google Scholar 

  31. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1:415–439

    Article  Google Scholar 

  32. Qian WM, Vahid MH, Sun YL, Heidari A, Barbaz-Isfahani R, Saber-Samandari S et al (2021) Investigation on the effect of functionalization of single-walled carbon nanotubes on the mechanical properties of epoxy glass composites: experimental and molecular dynamics simulation. J Mater Res Technol 12:1931–1945. https://doi.org/10.1016/j.jmrt.2021.03.104

    Article  Google Scholar 

  33. Roy S, Petrova RS, Mitra S (2018) Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol Rev 7:475–485

    Article  Google Scholar 

  34. Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45:2810–2822. https://doi.org/10.1016/j.carbon.2007.08.042

    Article  Google Scholar 

  35. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899. https://doi.org/10.1016/S0032-3861(03)00539-1

    Article  Google Scholar 

  36. Bartholome C, Miaudet P, Derré A, Maugey M, Roubeau O, Zakri C et al (2008) Influence of surface functionalization on the thermal and electrical properties of nanotube—PVA composites. Compos Sci Technol 68:2568–2573. https://doi.org/10.1016/j.compscitech.2008.05.021

    Article  Google Scholar 

  37. Costa P, Silva J, Ansón-casaos A, Martinez MT, Abad MJ, Viana J et al (2014) Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene—butadiene—styrene composites for large strain sensor applications. Compos Part B 61:136–146. https://doi.org/10.1016/j.compositesb.2014.01.048

    Article  Google Scholar 

  38. Smoleń P, Czujko T, Komorek Z, Grochala D, Rutkowska A, Osiewicz-Powęzka M (2021) Mechanical and electrical properties of epoxy composites modified by functionalized multiwalled carbon nanotubes. Materials. https://doi.org/10.3390/ma14123325

    Article  Google Scholar 

  39. Goudarzi R, Motlagh GH (2019) Heliyon The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon 5:e02595. https://doi.org/10.1016/j.heliyon.2019.e02595

    Article  Google Scholar 

  40. Yasmin A, Luo J, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189. https://doi.org/10.1016/j.compscitech.2005.10.014

    Article  Google Scholar 

  41. Wang L, Zhang L, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber / EG composites. Wear 276–277:85–93. https://doi.org/10.1016/j.wear.2011.12.009

    Article  Google Scholar 

  42. Murariu M, Laure A, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900. https://doi.org/10.1016/j.polymdegradstab.2009.12.019

    Article  Google Scholar 

  43. Jia W, Tchoudakov R, Narkis M (2005) Performance of expanded graphite and expanded milled-graphite fillers in thermosetting resins. Polym Compos 26:526–533. https://doi.org/10.1002/pc.20123

    Article  Google Scholar 

  44. Wang P, Zhang J, Dong L, Sun C, Zhao X, Ruan Y et al (2017) Interlayer polymerization in chemically expanded graphite for preparation of highly conductive. Mech Strong Polym Compos Chem Mater 29:3412–3422. https://doi.org/10.1021/acs.chemmater.6b04734

    Article  Google Scholar 

  45. Wei B, Yang S (2021) Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem Eng J 404:126437. https://doi.org/10.1016/j.cej.2020.126437

    Article  Google Scholar 

  46. Reis JML, Martins SA, da Costa Mattos HS (2020) Combination of temperature and electrical conductivity on semiconductor graphite/epoxy composites. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02487-z

    Article  Google Scholar 

  47. Teplykh AE, Bogdanov SG, Dorofeev YA, Pirogov AN, Skryabin YN, Makotchenko VG et al (2006) Structural state of expanded graphite prepared from intercalation compounds. Crystallogr Rep 51:62–66. https://doi.org/10.1134/S1063774506070108

    Article  Google Scholar 

  48. Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154–1160. https://doi.org/10.1016/j.compscitech.2010.03.001

    Article  Google Scholar 

  49. Shojaeiarani J, Bajwa D, Holt G (2020) Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites 6:41–46. https://doi.org/10.1080/20550324.2019.1710974

    Article  Google Scholar 

  50. Foundation A, Blaedel WJ, Wang J, Rochon AM, Gesser HD, Aubert JH et al (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814–816

    Article  Google Scholar 

  51. Fu S, Chen Z, Hong S, Han CC (2009) The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths. Carbon 47:3192–3200. https://doi.org/10.1016/j.carbon.2009.07.028

    Article  Google Scholar 

  52. Erkens M, Cambré S, Flahaut E, Fossard F, Loiseau A, Wenseleers W (2021) Ultrasonication-induced extraction of inner shells from double-wall carbon nanotubes characterized via in situ spectroscopy after density gradient ultracentrifugation. Carbon 185:113–125. https://doi.org/10.1016/j.carbon.2021.07.075

    Article  Google Scholar 

  53. Carreau PJ, MacDonald IF, Bird RB (1968) A nonlinear viscoelastic model for polymer solutions and melts-II. Chem Eng Sci. https://doi.org/10.1016/0009-2509(68)80024-7

    Article  Google Scholar 

  54. Kasgoz A, Akin D, Ayten AI, Durmus A (2014) Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2014.05.010

    Article  Google Scholar 

  55. Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer. https://doi.org/10.1016/j.polymer.2007.05.074

    Article  Google Scholar 

  56. Loos MR, Coelho LAF, Pezzin SH, Amico SC (2008) Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mater Res 11:347–352. https://doi.org/10.1590/S1516-14392008000300019

    Article  Google Scholar 

  57. Lau KT, Lu M, Lam CK, Cheung HY, Sheng FL, Li HL (2005) Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol 65:719–725. https://doi.org/10.1016/j.compscitech.2004.10.005

    Article  Google Scholar 

  58. Hong SG, Wu CS (1998) DSC and FTIR analysis of the curing behaviors of epoxy/DICY/solvent open systems. Thermochim Acta 316:167–175. https://doi.org/10.1016/S0040-6031(98)00356-6

    Article  Google Scholar 

  59. Brancato V, Visco AM, Pistone A, Piperno A, Iannazzo D (2013) Effect of functional groups of multi-walled carbon nanotubes on the mechanical, thermal and electrical performance of epoxy resin based nanocomposites. J Compos Mater 47:3091–3103. https://doi.org/10.1177/0021998312462431

    Article  Google Scholar 

  60. Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481. https://doi.org/10.1016/j.apsusc.2013.03.119

    Article  Google Scholar 

  61. Liu H, Thostenson ET (2017) Conductive nanocomposites for multifunctional sensing applications. Compr Compos Mater II. https://doi.org/10.1016/B978-0-12-803581-8.10017-7

    Article  Google Scholar 

  62. Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK, Nankali M (2019) Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunneling resistivity. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2019.105616

    Article  Google Scholar 

  63. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K et al (2004) Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol 64:2309–2316. https://doi.org/10.1016/j.compscitech.2004.01.025

    Article  Google Scholar 

  64. Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282:429–434. https://doi.org/10.1016/S0009-2614(97)01265-7

    Article  Google Scholar 

  65. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971. https://doi.org/10.1016/S0032-3861(99)00166-4

    Article  Google Scholar 

  66. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers 4:275–295. https://doi.org/10.3390/polym4010275

    Article  Google Scholar 

  67. Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371. https://doi.org/10.1016/j.compscitech.2004.04.002

    Article  Google Scholar 

  68. Zhou Y, Pervin F, Lewis L, Jeelani S (2007) Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater Sci Eng A 452–453:657–664. https://doi.org/10.1016/j.msea.2006.11.066

    Article  Google Scholar 

  69. Montazeri A, Montazeri N (2011) Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content. Mater Des 32:2301–2307. https://doi.org/10.1016/j.matdes.2010.11.003

    Article  Google Scholar 

  70. Her SC, Lin KY (2017) Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites. J Appl Biomater Funct Mater 15:S13–S18. https://doi.org/10.5301/jabfm.5000351

    Article  Google Scholar 

  71. Prolongo SG, Gude MR, Ureña A (2009) Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers. J Nanosci Nanotechnol 9:6181–6187. https://doi.org/10.1166/jnn.2009.1554

    Article  Google Scholar 

  72. Houshyar S, Shanks RA, Hodzic A (2005) The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites. J Appl Polym Sci 96:2260–2272. https://doi.org/10.1002/app.20874

    Article  Google Scholar 

  73. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 67:3041–3050. https://doi.org/10.1016/j.compscitech.2007.04.025

    Article  Google Scholar 

  74. Spinelli G, Lamberti P, Tucci V, Vertuccio L, Guadagno L (2018) Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos Part B Eng 145:90–99. https://doi.org/10.1016/j.compositesb.2018.03.025

    Article  Google Scholar 

  75. Goyat MS, Jaglan V, Tomar V, Louchaert G, Kumar A, Kumar K et al (2019) Superior thermomechanical and wetting properties of ultrasonic dual mode mixing assisted epoxy-CNT nanocomposites. High Perform Polym 31:32–42. https://doi.org/10.1177/0954008317749021

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Turan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, F., Guclu, M., Gurkan, K. et al. The effect of carbon nanotubes loading and processing parameters on the electrical, mechanical, and viscoelastic properties of epoxy-based composites. J Braz. Soc. Mech. Sci. Eng. 44, 93 (2022). https://doi.org/10.1007/s40430-022-03393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03393-2

Keywords

Navigation