Skip to main content
Log in

A simple chemical treatment for easy dispersion of carbon nanotubes in epoxy matrix for improving mechanical properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes have considerable potential for use as reinforcements in high-performance polymer composites, but their large-scale application has been hindered by their poor processability. Here, we report an extremely simple and scalable method for the chemical treatment of single-wall carbon nanotubes (SWNTs) to enable easy dispersion in an epoxy matrix. The treatment involves stirring SWNTs in a concentrated solution of sodium hydroxide in ethanol. The chemicals used can be recovered and re-used. The treated SWNTs show greater ease of exfoliation into organic solvents without the need for high-intensity ultrasonic probe treatment. Raman spectroscopy shows that the treatment does not create any noticeable defects or functional groups on the SWNT walls. As a result of the treatment, the SWNTs could be dispersed in epoxy with minimal, low-power ultrasonic treatment. The resulting composites showed increased fracture toughness and tensile strength at SWNT loadings as low as 0.5 weight percent, when compared with neat epoxy. The enhancement in properties of the composites does not decrease with increased SWNT loading, implying that the SWNTs do not re-aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7:10294–10329

    Article  Google Scholar 

  2. Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Compos Mater 46:155–172

    Article  Google Scholar 

  3. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress Polym Sci 35:357–401

    Article  Google Scholar 

  4. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  5. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013–14019

    Article  Google Scholar 

  6. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  7. Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77:3161–3163

    Article  Google Scholar 

  8. Demczyk BG, Wang YM, Cumings J et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178

    Article  Google Scholar 

  9. Lu Q, Keskar G, Ciocan R et al (2006) Determination of carbon nanotube density by gradient sedimentation. J Phys Chem B 110:24371–24376

    Article  Google Scholar 

  10. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  Google Scholar 

  11. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  Google Scholar 

  12. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube–polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  Google Scholar 

  13. Suri A, Chakraborty AK, Coleman KS (2008) A facile, solvent-free, noncovalent, and nondisruptive route to functionalize single-wall carbon nanotubes using tertiary phosphines. Chem Mater 20:1705–1709

    Article  Google Scholar 

  14. Moore VC, Strano MS, Haroz EH et al (2003) Individuallysuspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  Google Scholar 

  15. O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  16. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J 9:3732–3739

    Article  Google Scholar 

  17. Liu J, Rinzler AG, Dai H et al (1998) Fullerene pipes. Science 280:1253–1256

    Article  Google Scholar 

  18. Suri A, Coleman KS (2012) Formylation of single-walled carbon nanotubes. J Nanosci Nanotechnol 12:2929–2933

    Article  Google Scholar 

  19. Bayazit MK, Suri A, Coleman KS (2010) Formylation of single-walled carbon nanotubes. Carbon 48:3412–3419

    Article  Google Scholar 

  20. Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC (2003) Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc 125:14893–14900

    Article  Google Scholar 

  21. Niyogi S, Hamon MA, Hu H et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  Google Scholar 

  22. Moaseri E, Hasanabadi S, Maghrebi M, Baniadam M (2015) Improvements in fatigue life of amine-functionalized multi-walled carbon nanotube-reinforced epoxy composites: effect of functionalization degree and microwave-assisted procuring. J Composite Mater 49:1961–1969

    Article  Google Scholar 

  23. Sun L, Warren GL, O’Reilly JY et al (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46:320–328

    Article  Google Scholar 

  24. Xiao H, Song G, Li H, Sun L (2015) Improved tensile properties of carbon nanotube modified epoxy and its continuous carbon fiber reinforced composites. Polym Compos 36:1664–1668

    Article  Google Scholar 

  25. Hameed A, Islam M, Ahmad I, Mahmood N, Saeed S, Javed H (2015) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym Compos 36:1891–1898

    Article  Google Scholar 

  26. Gkikas G, Barkoula N-M, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Composs Part B Eng 43:2697–2705

    Article  Google Scholar 

  27. Pizzutto CE, Suave J, Bertholdi J, Pezzin SH, Coelho LAF, Amico SC (2011) Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Mater Res 14:256–263

    Article  Google Scholar 

  28. Salzmann CG, Llewellyn SA, Tobias G, Ward MAH, Huh Y, Green MLH (2007) The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv Mater 19:883–887

    Article  Google Scholar 

  29. Suri A, Coleman KS (2011) The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes. Carbon 49:3031–3038

    Article  Google Scholar 

  30. Verdejo R, Lamoriniere S, Cottam B, Bismarck A, Shaffer M (2007) Removal of oxidation debris from multi-walled carbon nanotubes, Chem Commun 513–515

  31. Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814–816

    Article  Google Scholar 

  32. Mattia D, Bau HH, Gogotsi Y (2006) Wetting of CVD carbon films by polar and nonpolar liquids and implications for carbon nanopipes. Langmuir 22:1789–1794

    Article  Google Scholar 

  33. Chen J, Hamon MA, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  Google Scholar 

  34. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194

    Article  Google Scholar 

  35. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65:2300–2313

    Article  Google Scholar 

  36. Hubble LJ, Clark TE, Makha M, Raston CL (2008) Selective diameter uptake of single-walled carbon nanotubes in water using phosphonated calixarenes and ‘extended arm’ sulfonated calixarenes. J Mater Chem 18:5961–5966

    Article  Google Scholar 

  37. Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535. doi:10.1007/s10853-011-5724-0

    Article  Google Scholar 

Download references

Acknowledgements

Anil Suri and Aravind Dasari thank the Ministry of National Development, Government of Singapore for funding (Grant No. L2NICCFP1-2013-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Suri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suri, A., Yadav, S.K. & Dasari, A. A simple chemical treatment for easy dispersion of carbon nanotubes in epoxy matrix for improving mechanical properties. J Mater Sci 51, 10775–10781 (2016). https://doi.org/10.1007/s10853-016-0289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0289-6

Keywords

Navigation