Skip to main content
Log in

Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of nanocrystalline grain size and bimodal distribution of nano- and microcrystalline grain sizes on the oxidation resistance and mechanical properties of Fe-based alloys has been investigated. Nanocrystalline and bimodal Fe–10Cr–5Ni–2Zr alloy pellets, prepared by mechanical alloying route, have been compared with conventional microcrystalline stainless steel alloys having 10 and 20 wt% Cr. Zr addition has been shown to improve the grain size stability at high temperatures. A significant improvement in the ductility of bimodal alloys with respect to nanocrystalline alloys was seen presumably due to the presence of the microcrystalline grains in the matrix. The high temperature oxidation of nanocrystalline and bimodal alloys at 550 °C shows superior oxidation resistance over microcrystalline alloy of similar composition (Fe–10Cr–5Ni) and comparable to that of microcrystalline alloy having twice as much Cr (Fe–20Cr–5Ni). Secondary Ion Mass Spectroscopy depth profiling confirms the hypothesis that nanostructure facilitates the enrichment of Cr at the oxide metal interface resulting in the formation of a passive oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raman RKS, Gupta RK (2009) Corros Sci 51:316

    Article  CAS  Google Scholar 

  2. Raman RKS, Gupta RK, Koch CC (2010) Philos Mag A 90:3233

    Article  CAS  Google Scholar 

  3. Dapeng Z, Yong L, Feng L, Yuren W, Liujie Z, Yuhai D (2011) Mater Lett 65:1672

    Article  Google Scholar 

  4. Tellkamp VL, Lavernia EJ (1999) Nanostruct Mater 12:249

    Article  Google Scholar 

  5. Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Philos Mag A 80:1017

    Article  CAS  Google Scholar 

  6. Lee Z, Witkin DB, Radmilovic V, Lavernia EJ, Nutt SR (2005) Mater Sci Eng A 410–411:462

    Google Scholar 

  7. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Scripta Mater 49:297

    Article  CAS  Google Scholar 

  8. Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) Scripta Mater 49:651

    Article  CAS  Google Scholar 

  9. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Han K et al (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  10. Koch CC, Youssef KM, Scattergood RO, Murty KL (2005) Adv Eng Mater 7:787

    Article  CAS  Google Scholar 

  11. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  12. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  13. Trapp S, Limbach CT, Gonser U, Campbell SJ, Gleiter H (1995) Phys Rev Lett 75:3760

    Article  CAS  Google Scholar 

  14. Roy RA, Roy R (1984) Mater Res Bull 19:169

    Article  CAS  Google Scholar 

  15. Groza JR (2007) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publication, Norwich

    Google Scholar 

  16. Choi JH, Moon KI, Kim JK, Oh YM, Suh JH, Kim SJ (2001) J Alloys Compd 315:178

    Article  CAS  Google Scholar 

  17. Suryanarayana C, Froes F, Korth G (1997) Metall Mater Trans A 28:293

    Article  Google Scholar 

  18. Vajpai SK, Mahesh BV, Dube RK (2009) J Alloys Compd 476:311

    Article  CAS  Google Scholar 

  19. Korth G, Williamson R (1995) Metall Mater Trans A 26:2571

    Article  Google Scholar 

  20. Vajpai SK, Dube RK, Tewari A (2008) Metall Mater Trans A 39:2725

    Article  Google Scholar 

  21. Liu Y, Liu W (2007) J Alloys Compd 440:154

    Article  CAS  Google Scholar 

  22. Ji Y, Kallio M, Tiainen T (2000) Scripta Mater 42:1017

    Article  CAS  Google Scholar 

  23. Moon KI, Lee KS (1999) J Alloys Compd 291:312

    Article  CAS  Google Scholar 

  24. Seybolt AU (1960) J Electrochem Soc 107:147

    Article  CAS  Google Scholar 

  25. Horibe S, Nakayama T (1975) Corros Sci 15:589

    Article  CAS  Google Scholar 

  26. Nakayama T, Horibe S, Jap J (1973) Inst. Met. 37:1313

    CAS  Google Scholar 

  27. Sasa K, Nakayama T (1977) Corros Sci 17:783

    Article  CAS  Google Scholar 

  28. Ledjeff K, Rahmel A, Schorr M (1981) Oxid Met 15:485

    Article  CAS  Google Scholar 

  29. Giggins CS, Pettit FS (1969) Metall. Trans. 245:2509

    CAS  Google Scholar 

  30. Merz MD (1979) Metall Mater Trans A 10:71

    Article  Google Scholar 

  31. Basu SN (1991) Oxid Met 36:28

    Article  Google Scholar 

  32. Guduru RK, Darling KA, Kishore R, Scattergood RO, Koch CC, Murty KL (2005) Mater Sci Eng A 395:307

    Article  Google Scholar 

  33. Guduru RK, Wong PZ, Darling KA, Koch CC, Murty KL, Scattergood RO (2007) Adv Eng Mater 9:855

    Article  Google Scholar 

  34. Lucas GE (1983) J. Nucl Mater 117:327–339

    Article  CAS  Google Scholar 

  35. Toloczko MB, Kurtz RJ, Hasegawa A, Abe K (2002) J Nucl Mater, Part 2(0) 307–311:1619

    Google Scholar 

  36. Koch CC (2003) Rev Adv Mater Sci 5:53

    Google Scholar 

  37. Koch C (2001) Encyclopedia of materials: science and technology. Elsevier, Oxford

    Google Scholar 

  38. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  39. Tong HY, Shi FG, Lavernia EJ (1995) Scr Metall Mater 32:511

    Article  CAS  Google Scholar 

  40. Stringer J, Hed A, Wallwork G, Wilcox B (1972) Corros Sci 32:511

    Google Scholar 

  41. Lobb RC, Evans HE (1981) Metal Sci 15:267

    CAS  Google Scholar 

  42. Kofstad P (1988) High temperature corrosion. Elsevier Applied Science and Publishers Ltd, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Mahesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh, B.V., Raman, R.K.S. & Koch, C.C. Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J Mater Sci 47, 7735–7743 (2012). https://doi.org/10.1007/s10853-012-6686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6686-6

Keywords

Navigation