Skip to main content
Log in

Studies on the Mechanical Alloying of Ni-Fe-Co Powders and Its Explosive Compaction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A bulk nanocrystalline 80Ni-15Fe-5Co (wt pct) soft magnetic material was successfully produced via “mechanical alloying-explosive compaction” route. A rapid grain refining was observed during initial 12 hours of milling in high-energy planetary ball mill, followed by a level-off trend. A comparison of crystallite size of 125-hour-milled mechanically-alloyed (MAed) powder (10 nm) and explosively-compacted material (15 nm) showed negligible grain growth during explosive compaction. It has been shown that no phase change was brought about by the explosive compaction of the milled powder, and Ni3Fe remained the predominant phase in both MAed and explosively-compacted material. A possible mechanism of densification of flaky MAed powder during explosive compaction has been proposed, which consisted of the plastic deformation of powder particles into elongated shape followed by joining and folding of elongated particles. This process produced a continuous network of elongated and folded particles in the compact. The bulk nanocrystalline material showed improved magnetic properties, such as high Curie temperature and negligible core loss, making it a promising soft magnetic material for applications involving high temperatures and changing magnetic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. INCONEL is a trademark of Inco Alloys International, Huntington Woods, WV.

References

  1. H. Gleiter: Prog. Mater. Sci., 1989, vol. 33, pp. 223–315

    Article  CAS  Google Scholar 

  2. R. Birringer: Mater. Sci. Eng. A, 1989, vol. 117, pp. 33–43

    Article  Google Scholar 

  3. N. Nihara: J. Ceram. Soc. Jpn., 1991, vol. 99 (10), pp. 974–82

    Google Scholar 

  4. C. Kuhourt, L. Schultz: J. Appl. Phys., 1992, vol. 71 (4), pp. 1896–1900

    Article  Google Scholar 

  5. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29

    Article  CAS  Google Scholar 

  6. G. Herzer: J. Magn. Magn. Mater., 2005, vol. 294, pp. 99–106

    Article  CAS  Google Scholar 

  7. Y. Yoshizawa, S. Oguma, K. Yamauchi: J. Appl. Phys., 1988, vol. 64, pp. 6044–46

    Article  CAS  Google Scholar 

  8. G. Herzer: IEEE Trans. Magn., 1990, vol. 26 (5), pp. 1397–402

    Article  CAS  Google Scholar 

  9. G. Herzer: J. Magn. Magn. Mater., 1992, vol. 112, pp. 258–62

    Article  CAS  Google Scholar 

  10. Y. Yoshizawa: J. Metast. Nanocryst. Mater., 1999, vol. 1, pp. 51–62

    Article  Google Scholar 

  11. G. Herzer: IEEE Trans. Magn., 1989, vol. 25 (5), pp. 3327–29

    Article  CAS  Google Scholar 

  12. Y. Yoshizawa: Scripta Mater., 2001, vol. 44, pp. 1321–25

    Article  CAS  Google Scholar 

  13. H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson: Metall. Trans. A, 1990, vol. 21A, pp. 2333–37

    CAS  Google Scholar 

  14. N.E. Fenineche, R. Hamzaoui, O. El Kedim: Mater. Lett., 2003, vol. 57, pp. 4165–69

    Article  CAS  Google Scholar 

  15. C. Kuhrt, L. Schultz: J. Appl. Phys., 1993, vol. 73 (10), pp. 6588–90

    Article  CAS  Google Scholar 

  16. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, M. Saravanakumar: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 408–12

    Google Scholar 

  17. I. Chicinas, O. Geoffroy, O. Isnard, V. Pop: J. Magn. Magn. Mater., 2005, vols. 290–291, pp. 1531–34

    Article  CAS  Google Scholar 

  18. G. Gonzales, D. Ibarra, J. Ochoa, R. Villalba, A. Sagarzazu: J. Alloy Compd., 2007, vols. 434–435, pp. 437–41

    Article  CAS  Google Scholar 

  19. I. Chicinas, O. Geoffroy, O. Isnard, V. Pop: J. Magn. Magn. Mater., 2007, vol. 310, pp. 2474–76

    Article  CAS  Google Scholar 

  20. C. Kuhrt: J. Magn. Magn. Mater., 1996, vols. 157–158, pp. 235–36

    Article  Google Scholar 

  21. H.R.M. Hosseini, A. Bahrami: Mater. Sci. Eng. B, 2005, vol. 123, pp. 74–79

    Article  CAS  Google Scholar 

  22. W. Lu, L. Yang, B. Yan, W. Huang, B. Lu: J. Alloy Compd., 2006, vol. 413, pp. 85–89

    Article  CAS  Google Scholar 

  23. J. Ding, Y. Li, L.F. Chen, C.R. Deng, Y. Shi, Y.S. Chow, T.B. Gang: J. Alloy Compd., 2001, vol. 314, pp. 262–67

    Article  CAS  Google Scholar 

  24. Y. Shen, H.H. Hng, J.T. Oh: J. Alloy Compd., 2004, vol. 379, pp. 266–71

    Article  CAS  Google Scholar 

  25. O. Isnard, V. Pop, I. Chicinas: J. Magn. Magn. Mater., 2005, vols. 290–291, pp. 1535–38

    Article  CAS  Google Scholar 

  26. W.H. Gourdin: Prog. Mater. Sci., 1986, vol. 30, pp. 39–80

    Article  CAS  Google Scholar 

  27. K.I. Kondo, H. Hirai, H. Oda: Jpn. J. Appl. Phys., 1994, vol. 33, pp. 2079–86

    Article  CAS  Google Scholar 

  28. C.P. Dogan, J.C. Rawers, R.D. Govier, G. Korth: Nanostr. Mater., 1994, vol. 4 (6), pp. 631–44

    Article  CAS  Google Scholar 

  29. S.C. Glade, N.N. Thadani: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2565–69

    Article  CAS  Google Scholar 

  30. G.E. Korth, R.L. Williamson: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2571–78

    Article  CAS  Google Scholar 

  31. J.C. Rawers, G. Korth: Nanostr. Mater., 1996, vol. 7 (1–2), pp. 25–45

    Article  CAS  Google Scholar 

  32. C. Suryanarayana, F.H. Froes, G.E. Korth: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 293–302

    Article  CAS  Google Scholar 

  33. J.R. Groza: in Non-Equilibrium Processing of Materials, C. Suryanarayana, ed., Pergamon, New York, NY, 1999, ch. 13, p. 368

  34. R.A. Varin, L. Zbroniec, T. Czujko, Y.K. Song: Mater. Sci. Eng. A, 2001, vol. A300, pp. 1–11

    CAS  Google Scholar 

  35. T.P. Raming, W.E. Vanzyl, E.P. Carton, H. Verweiz: Ceram. Int., 2004, vol. 30, pp. 629–34

    Article  CAS  Google Scholar 

  36. B. Gehrmann: J. Magn. Magn. Mater., 2005, vols. 290–291, pp. 1419–22

    Article  CAS  Google Scholar 

  37. H. Gavrila, V. Ionita: J. Optoelec. Adv. Mater., 2002, vol. 4 (2), pp. 173–92

    CAS  Google Scholar 

  38. H.P. Klug, L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley and Sons, New York, NY, 1974, pp. 618–708

    Google Scholar 

  39. W. Herrmann: J. Appl. Phys., 1969, vol. 40, p. 2490

    Article  Google Scholar 

  40. M.A. Meyers, S.L. Wang: Acta Metall., 1988, vol. 36, pp. 925–36

    Article  CAS  Google Scholar 

  41. M.A. Meyers: Dynamic Behavior of Materials, John Wiley and Sons, Inc., New York, NY, 1994, pp. 124–51

    Book  Google Scholar 

  42. H.L. Coker, M.A. Meyers, J.F. Wessels: J. Mater. Sci., 1991, vol. 26, pp. 1277–86

    Article  CAS  Google Scholar 

  43. R.R. Pruemmer, T.B. Bhat, K. Sivakumar, K. Hokamoto: Explosive Compaction of Powders and Composites, Science Publishers, Enfield, NH, 2006, pp. 20–23

    Google Scholar 

  44. I. Chicinas, V. Pop, O. Isnard: J. Magn. Magn. Mater., 2002, vols. 242–245, pp. 885–87

    Article  Google Scholar 

  45. I. Chicinas, V. Pop, O. Isnard, J.M.L. Breton, J. Juraszek: J. Alloy Compd., 2003, vol. 352, pp. 34–40

    Article  CAS  Google Scholar 

  46. E. Jartych, J.K. Zurawicz, D. Oleszak, M. Pekala: J. Magn. Magn. Mater., 2000, vol. 208, pp. 221–30

    Article  CAS  Google Scholar 

  47. H.N. Frase, R.D. Shull, L.B. Hong, T.A. Stephens, Z.Q. Gao, B. Fultz: Nanostr. Mater., 1999, vol. 11 (8), pp. 987–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support extended by the Director, Terminal Ballistic Research Laboratory (Chandigarh, India) for conducting explosive-compaction tests. We also extend our sincere thanks to M/S Union Miniere, Belgium, for providing Co powder for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.K. Vajpai.

Additional information

Manuscript submitted February 16, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajpai, S., Dube, R. & Tewari, A. Studies on the Mechanical Alloying of Ni-Fe-Co Powders and Its Explosive Compaction. Metall Mater Trans A 39, 2725–2735 (2008). https://doi.org/10.1007/s11661-008-9617-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9617-z

Keywords

Navigation