Skip to main content
Log in

Adhesive surface interactions of cellulose nanocrystals from different sources

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Adhesion plays an important role in the final properties of nanocomposites. This study explored the surface interaction of cellulose nanocrystals (CNCs) and the effect of CNC sources on adhesion between individual CNCs and the Si tip of an AFM cantilever using a force mapping technique called FMap. The adhesion between CNCs and a Si tip from five different sources has been studied: cotton, Whatman filter paper, hemp, softwood chemical kraft pulp, and softwood-dissolving pulp (alistaple). Mica was used as the background substrate to act as an internal standard. This study’s findings suggest that adhesion is not the same for all CNCs. Transmission electron microscopy and atomic force microscopy were used to determine the size and shape of each CNC. The experimental quantitative data showed that adhesion between CNCs and the Si tip has a close correlation with the diameter of the CNCs. X-ray photoelectron spectroscopy confirmed the presence of sulfate groups on the surface of the CNCs and a correlation between adhesion and surface chemistry of the CNCs was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Sullivan AC (1997) Cellulose 4:173

    Article  Google Scholar 

  2. Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6:1048

    Article  CAS  Google Scholar 

  3. Kovacs T, Naish V, O’Connor B, Blaise C, Gagne’ F, Hall L, Trudeau V, Martel P (2010) Nanotoxicology 4:255

    Article  CAS  Google Scholar 

  4. Bledzki A, Gassan J (1999) Prog Polym Sci 24:221

    Article  CAS  Google Scholar 

  5. Eichhorn S, Baillie C, Zafeiropoulos N, Mwaikambo L, Ansell M, Dufresne A, Entwistle K, Herrera-Franco P, Escamilla G, Groom L, Hughes M, Hill C, Rials T, Wild P (2001) J Mat Sci 36:2107. doi:10.1023/A:1017512029696

    Article  CAS  Google Scholar 

  6. Samir MASA, Alloin F, Dufresne A (2005) Biomacromolecules 6:612

    Article  CAS  Google Scholar 

  7. Dalmas F, Chazeau L, Cauthier C, Cavaille J-Y, Dendievel R (2006) Polymer 47(8):2802–2812

    Article  CAS  Google Scholar 

  8. Noorani S, Simonsen J, Atre S (2007) Cellulose 14:577

    Article  CAS  Google Scholar 

  9. Orts WJ, Shey J, Imam SH, Glenn GM, Buttman ME, Revol J-F (2005) J Poly Environ 13:301

    Article  CAS  Google Scholar 

  10. Petersson L, Kvien I, Oksman K (2007) Compost Sci Technol 67:2535

    Article  CAS  Google Scholar 

  11. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) J Adhes Sci Technol 22:545

    Article  CAS  Google Scholar 

  12. Nordgren N, Lonnberg H, Hult A, Malmstrom E, Rutland MW (2009) ACS Appl Mater Interfaces 1:2098

    Article  CAS  Google Scholar 

  13. Notley SM, Eriksson M, Wågberg L, Beck S, Gray DG (2006) Langmuir 22:3154

    Article  CAS  Google Scholar 

  14. Bastidas JC, Venditti R, Pawlak J, Gilbert R, Zauscher S, Kadla JF (2005) Carbohydr Polym 62:369

    Article  CAS  Google Scholar 

  15. Eriksson M, Notley SM, Wågberg L (2007) Biomacromolecules 8:912

    Article  CAS  Google Scholar 

  16. Mahlberg R, Niemi HEM, Denes FS, Rowell RM (1999) Langmuir 15:2985

    Article  CAS  Google Scholar 

  17. Paiva AT, Sequeira SM, Evtuguin DV, Kholkin AL, Portugal I (2007) Modern Res Educ Topics Microsc 726–733

  18. Raja G, Balnois E, Baleya C, Grohensa Y (2009) Colloids Surf A: Physicochem Eng Aspects 352:47

    Article  Google Scholar 

  19. Lefebvre J, Gray DG (2005) Cellulose 12:127

    Article  CAS  Google Scholar 

  20. Stiernstedt J, Nordgren N, Wågberg L, Brumer Iii H, Gray DG, Rutland MW (2006) J Colloid Interface Sci 303:117

    Article  CAS  Google Scholar 

  21. Karlsson J, Blachot J-F, Pegw A, Gatenholm P (1996) Polym Compos 17:300

    Article  CAS  Google Scholar 

  22. Bledzki AK, Reihmane S, Gassan J (1996) J Appl Polym Sci 59:1329

    Article  CAS  Google Scholar 

  23. Bogdanovic G, Tiberg F, Rutland MW (2001) Langmuir 17:5911

    Article  CAS  Google Scholar 

  24. Radtchenko IL, Papastavrou G, Borkovec M (2005) Biomacromolecules 6:3057

    Article  CAS  Google Scholar 

  25. Zhang X, Young RA (2000) Mat Res Soc Symp Proc 586:157

    Article  CAS  Google Scholar 

  26. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Langmuir 26:4480

    Article  CAS  Google Scholar 

  27. Lahiji RR, Reifenberger R, Raman A, Rudi A, Moon RJ (2008) NSTI Nanotechol 2:704

    CAS  Google Scholar 

  28. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) Rev Sci Instrum 78

  29. Sader JE, Larson I, Mulvaney P, White LR (1995) Rev Sci Instrum 66:3789

    Article  CAS  Google Scholar 

  30. García R, Pérez R (2002) Surf Sci Rep 47:197

    Article  Google Scholar 

  31. Raman A, Melcher J, Tung R (2008) Nano Today 3:20

    Article  CAS  Google Scholar 

  32. Anczykowski B, Krüger D, Fuchs H (1996) Phys Rev B 53:15485

    Article  CAS  Google Scholar 

  33. Yang D-Q, Xiong Y-Q, Guo Y, Da D-A, Lu W-G (2001) 36:263

  34. Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Meas Sci Technol 2

  35. Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A Physicochem Eng Aspects 142:75

    Article  CAS  Google Scholar 

  36. Bondeson D, Mathew A, Oksman K (2006) Cellulose 13:171

    Article  CAS  Google Scholar 

  37. Dong X, Revol J-F, Gray D (1998) Cellulose 5:19

    Article  CAS  Google Scholar 

  38. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) J Adhes Sci Technol 22:545

    Article  CAS  Google Scholar 

  39. Schaefer DM, Gomez J (2000) J Adhes 74:341

    Article  CAS  Google Scholar 

  40. Cappella B, Dietler G (1999) Surf Sci Rep 34:1

    Article  CAS  Google Scholar 

  41. Segeren LHGJ, Siebum B, Karssenberg FG, Berg JWAVD, Vancso GJ (2002) J Adhes Sci Technol 16:793

    Article  CAS  Google Scholar 

  42. Moreno-Herrero F, Colchero J, Gómez-Herrero J, Baró AM (2004) Phys Rev E 69:031915

    Article  CAS  Google Scholar 

  43. Pablo PJd, Colchero J, Gomez-Herrero J, Baro AM, Schaefer DM, Howell S, Walsh B, Reifenberger R (1999) J Adhes 71:339

    Article  Google Scholar 

  44. Pablo PJd, Gomez-Herrero J, Baro AM (1998) Appl Phys Lett 73:3300

    Article  Google Scholar 

  45. Bonilla FA, Bonilla RS (2009) Asylum Res CA May 19

  46. Stifter T, Marti O, Bhushan B (2000) Phys Rev B 62

  47. Butt H-J, Cappella B, Kappl M (2005) Surf Sci Rep 59:1

    Article  CAS  Google Scholar 

  48. Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Colloids Surf A Physicochem Eng Aspects 377:297

    Article  CAS  Google Scholar 

  49. Johansson L-S, Campbell JM (2004) Surf Interface Anal 36:1018

    Article  CAS  Google Scholar 

  50. Gray DG, Weller M, Ulkem N, Lejeune A (2010) Cellulose 17:117

    Article  CAS  Google Scholar 

  51. Hasani M, Cranston ED, Westmana G, Gray DG (2008) Soft Matter 4:2238

    Article  CAS  Google Scholar 

  52. Dong XM, Kimura T, Revol J-F, Gray DG (1996) Langmuir 12:2076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya R. Lahiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiji, R.R., Boluk, Y. & McDermott, M. Adhesive surface interactions of cellulose nanocrystals from different sources. J Mater Sci 47, 3961–3970 (2012). https://doi.org/10.1007/s10853-012-6247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6247-z

Keywords

Navigation