Skip to main content
Log in

Elaboration and mechanical characterization of multi-phase alumina-based ultra-fine composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al2O3-10 vol.% YAG and Al2O3-10 vol.% ZrO2 bi-phase composites as well as Al2O3-5 vol.% YAG-5 vol.% ZrO2 tri-phase composite were developed by controlled surface modification of an alumina powder with inorganic precursors of the second phases. Green bodies were produced by dry pressing and slip casting and then sintered at 1500 °C. In particular, slip casting led to fully dense, defect-free, and highly homogenous samples, made of a fine dispersion of the second phases into the micronic alumina matrix, as observed by SEM. The mechanical characterization proved the predominant role of the final density on the Vickers hardness, while the elastic modulus was affected by the volume fraction of the constituent phases, in fairly good agreement with the rule of mixture prediction. The fracture toughness values of the bi- and tri-phase materials were similar, and their crack paths revealed the importance of the thermal residual stresses at the matrix-reinforcement interfaces, promoting inter-granular propagations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sternitzke M (1997) J Eur Ceram Soc 17:1061

    Article  CAS  Google Scholar 

  2. Towata A, Hwang HJ, Yasuoka M, Sando M, Niihara K (1998) J Am Ceram Soc 81:2469

    Article  CAS  Google Scholar 

  3. Wang H, Gao L (2001) Ceram Int 27:721

    Article  CAS  Google Scholar 

  4. Li W, Gao L (1999) Nanostruct Mater 11:1073

    Article  CAS  Google Scholar 

  5. Duong H, Wolfestine J (1993) Mater Sci Eng A 172:173

    Article  Google Scholar 

  6. French JD, Zhao J, Harmer MP, Chan HM, Miller GA (1994) J Am Ceram Soc 77:2857

    Article  CAS  Google Scholar 

  7. Torrecillas R, Schehl M, Diaz LA, Menendez JL, Moya JS (2007) J Eur Ceram Soc 27:143

    Article  CAS  Google Scholar 

  8. Parthasarathy AP, Mah TI, Keller K (1992) J Am Ceram Soc 75:1756

    Article  CAS  Google Scholar 

  9. Chevalier J, Grandjean S, Kuntz M, Pezzotti G (2009) Biomaterials 30:5279

    Article  CAS  Google Scholar 

  10. Sadangi RK, Shukla V, Kear BH (2005) Int J Refract Met Hard Mater 23:363

    Article  CAS  Google Scholar 

  11. Guimaraes FAT, Silva KL, Trombini V, Pierri JJ, Rodrigues JA, Tomasi R, Pallone EMJA (2009) Ceram Int 35:741

    Article  CAS  Google Scholar 

  12. Tuan WH, Chen RZ, Wang TC, Cheng CH, Kuo PS (2002) J Eur Ceram Soc 22:22827

    Article  Google Scholar 

  13. Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461

    Article  CAS  Google Scholar 

  14. Chen T, Tekeli S, Dillon RP, Mecartney ML (2008) Ceram Int 34:365

    Article  CAS  Google Scholar 

  15. Taherabadi L, Trujillo JE, Chen T, Porter JR, Mecartney ML (2008) J Eur Ceram Soc 28:371

    Article  CAS  Google Scholar 

  16. Schehl M, Torrecillas R (2002) Acta Mater 50:1125

    Article  CAS  Google Scholar 

  17. Torrecillas R, Schehl M, Diaz LA (2007) J Eur Ceram Soc 27:4613

    Article  CAS  Google Scholar 

  18. Kim DK, Kriven WM (2008) J Am Ceram Soc 91:793

    Article  CAS  Google Scholar 

  19. Oelgardt C, Anderson J, Heinrich JG, Messing GL (2010) J Eur Ceram Soc 30:649

    Article  CAS  Google Scholar 

  20. http://www.taimei-chem.co.jp

  21. Palmero P, Naglieri V, Chevalier J, Fantozzi G, Montanaro L (2009) J Eur Ceram Soc 29:59

    Article  CAS  Google Scholar 

  22. Naglieri V, Palmero P, Montanaro L (2009) J Therm Anal Calorim 97:231

    Article  CAS  Google Scholar 

  23. Naglieri V, Joly-Pottuz L, Chevalier J, Lombardi M, Montanaro L (2010) J Eur Ceram Soc 30:3377

    Article  CAS  Google Scholar 

  24. Palmero P, Naglieri V, Spina G, Lombardi M (2011) Ceram Int 37:139

    Article  CAS  Google Scholar 

  25. Quinn GD, Patel PJ, Lloyd I (2002) J Res Natl Inst Stan 107:299

    CAS  Google Scholar 

  26. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  27. CSM indentation testers catalogue. http://www.csm-instruments.com/it/webfm_send/51. Accessed on 1 Jun 2010

  28. Ponton CB, Rawlings RD (1989) Mater Sci Tech 5:865

    Google Scholar 

  29. Azar M, Palmero P, Lombardi M, Garnier V, Montanaro L, Fantozzi G, Chevalier J (2008) J Eur Ceram Soc 28:1121

    Article  CAS  Google Scholar 

  30. Lach R, Haberko K, Bucko MM, Szumera M, Grabowski G (2011) J Eur Ceram Soc 31:1889

    Article  CAS  Google Scholar 

  31. Krell A, Schädlich S (2001) Mater Sci Eng A307:172

    CAS  Google Scholar 

  32. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Biomaterials 23:937

    Article  Google Scholar 

  33. Tekeli S (2006) Mater Design 27:230

    Article  CAS  Google Scholar 

  34. Ikesue A, Furusato I (1995) J Am Ceram Soc 78:225

    Article  CAS  Google Scholar 

  35. Li J, Wu YS, Pan YB, Liu B, Huang LP, Guo JK (2008) Opt Mater 31:6

    Article  Google Scholar 

  36. Munro RG (1997) J Am Ceram Soc 80:1919

    Article  CAS  Google Scholar 

  37. Ochiai S, Ikeda S, Iwamoto S, Sha JJ, Okuda HH, Waku Y, Nakagawa N, Mitani A, Sato M, Ishikawa T (2008) J Eur Ceram Soc 28:2309

    Article  CAS  Google Scholar 

  38. VanLandingham MR (2003) J Res Natl Inst Stan 108:249

    Google Scholar 

  39. Yagi H, Yanagitani T, Numazawa T, Ueda K (2007) Ceram Int 33:711

    Article  CAS  Google Scholar 

  40. Selçuk A, Atkinson A (1997) J Eur Ceram Soc 17:1523

    Article  Google Scholar 

  41. NIST Property Data Summaries—Elastic moduli data for polycrystalline ceramics. http://www.ceramics.nist.gov/srd/summary/ZrO2cY.htm. Accessed 1 Jun 2010

  42. Gibson RF (1994) Principles of composite material mechanics. McGrow-Hill International Editions, New York

    Google Scholar 

  43. Zwanziger JW, Werner-Zwanziger U, Zanotto ED, Rotari E, Glebova LN, Glebov LB, Schneider JF (2006) J Appl Phis 99:083511

    Article  Google Scholar 

  44. Selsing J (1961) J Am Ceram Soc 44:419

    Article  Google Scholar 

  45. Mori M, Abe T, Itoh H, Yamamoto O, Takeda Y, Kawahara T (1994) Solid State Ionics 74:157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Eng. Andrea Cattini is kindly acknowledged for his contribution in the experimental activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Palmero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmero, P., Sola, A., Naglieri, V. et al. Elaboration and mechanical characterization of multi-phase alumina-based ultra-fine composites. J Mater Sci 47, 1077–1084 (2012). https://doi.org/10.1007/s10853-011-5898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5898-5

Keywords

Navigation