Skip to main content
Log in

Effect of a LZSA glass-ceramic addition on the sintering behavior of alumina

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work evaluated the effect of a LZSA (Li2O·ZrO2·SiO2·Al2O3) glass-ceramic on the sintering behavior of alumina obtained via liquid-phase sintering. An experimental plan based on three different contents (7, 15 and 21 vol%) of a particulated (d 50 = 1.52 µm) 11.6Li2O·16.8ZrO2·68.2SiO2·3.4Al2O3 glass-ceramic and three different particulate aluminas (d 50 = 0.5, 1.7 and 2.8 µm) was defined. Each formulated composition (composite) was wet-mixed, dried and formed by uniaxial pressing (128 MPa). The sintering behavior and microstructural characteristics were studied and observed by optical dilatometry and scanning electron microscopy, respectively. The results showed that the LZSA glass-ceramic increased the densification of the studied aluminas, resulting in a reduction of 25–100 °C in the sintering initiation temperature. The higher the LZSA content was, the lower the maximum linear shrinkage, the higher the maximum LS rate and the higher the relative density, regardless of the alumina used. These effects were more pronounced for coarse alumina (Ac). The composite Ac21 achieved a relative density of 95 % in the samples sintered at 1600 °C/40 min compared to 85 % for the samples sintered at 1600 °C/4 h. Thus, the LZSA glass-ceramic is a potential candidate for improving the densification of alumina in applications where wear resistance is the main requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Medvedovski E. Wear-resistant engineering ceramics. Wear. 2001;249:821–8. doi:10.1016/S0043-1648(01)00820-1.

    Article  CAS  Google Scholar 

  2. Medvedovski E. Alumina–mullite ceramics for structural applications. Ceram Int. 2006;32:369–75. doi:10.1016/j.ceramint.2005.04.001.

    Article  CAS  Google Scholar 

  3. Cesari F, Esposito L, Furgiuele FM, Maletta C, Tucci A. Fracture toughness of alumina–zirconia composites. Ceram Int. 2006;32:249–55. doi:10.1016/j.ceramint.2005.02.012.

    Article  CAS  Google Scholar 

  4. Puchy V, Hvizdos P, Dusza J, Kovac F, Inam F, Reece MJ. Wear resistance of Al2O3-CNT ceramic nanocomposites at room and high temperatures. Ceram Int. 2013;39:5821–6. doi:10.1016/j.ceramint.2012.12.100.

    Article  CAS  Google Scholar 

  5. Silva MV, Stainer D, Al-Qureshi HA, Montedo ORK, Hotza D. Alumina-based ceramics for armor application: mechanical characterization and ballistic testing. J Ceram. 2014;. doi:10.1155/2014/618154.

    Google Scholar 

  6. Rutkowski P, Piekarczyk W, Stobierski L, Górny G. Anisotropy of elastic properties and thermal conductivity of Al2O3/h-BN composites. J Therm Anal Calorim. 2014;115:461–6. doi:10.1007/s10973-013-3246-5.

    Article  CAS  Google Scholar 

  7. Kumar AS, Durai AR, Sornakumar T. Wear behaviour of alumina based ceramic cutting tools on machining steels. Tribol Int. 2006;39:191–7. doi:10.1016/j.triboint.2005.01.021.

    Article  CAS  Google Scholar 

  8. Rutkowski P, Klimczyk P, Jaworska L, Stobierski L, Dubiel A. Thermal properties of pressure sintered alumina–graphene composites. J Therm Anal Calorim. 2015;122:105–14. doi:10.1007/s10973-015-4694-x.

    Article  CAS  Google Scholar 

  9. Guyot P, Antou G, Pradeilles N, Weibel A, Vandenhende M, Chevallier G, Peigney A, Estournès C, Maître A. Hot pressing and spark plasma sintering of alumina: discussion about an analytical modelling used for sintering mechanism determination. Scripta Mater. 2014;84–85:35–8. doi:10.1016/j.scriptamat.2014.04.013.

    Article  Google Scholar 

  10. Bocanegra-Bernal MH, Domínguez-Rios C, Garcia-Reyes A, Aguilar-Elguezabal A, Echeberria J, Nevarez-Rascon A. Hot isostatic pressing (HIP) of α-Al2O3 submicron ceramics pressureless sintered at different temperatures: improvement in mechanical properties for use in total hip arthroplasty (THA). Int J Refract Metals Hard Mater. 2009;27:900–6. doi:10.1016/j.ijrmhm.2009.05.004.

    Article  CAS  Google Scholar 

  11. Dweck J, Fischer R, Fischer E. Thermogravimetric characterization of gelcast alumina composites. J Therm Anal Calorim. 1997;49(3):1249–54.

    Article  CAS  Google Scholar 

  12. Zuo F, Saunier S, Marinel S, Chanin-Lambert P, Peillon N, Goeuriot D. Investigation of the mechanism(s) controlling microwave sintering of α-alumina: influence of the powder parameters on the grain growth, thermodynamics and densification kinetics. J Eur Ceram Soc. 2015;35:959–70. doi:10.1016/j.jeurceramsoc.2014.10.025.

    Article  CAS  Google Scholar 

  13. Hesabi ZR, Haghighatzadeh M, Mazaheri M, Galusek D, Sadrnezhaad SK. Suppression of grain growth in sub-micrometer alumina via two-step sintering method. J Am Ceram Soc. 2009;29:1371–7. doi:10.1016/j.jeurceramsoc.2008.08.027.

    Article  Google Scholar 

  14. Cho S-J, Hockey BJ, Lawn BR, Benninson SJ. Grain-size and R-curve effects in the abrasive wear of alumina. J Am Ceram Soc. 1989;72:1249–52. doi:10.1111/j.1151-2916.1989.tb09718.x.

    Article  CAS  Google Scholar 

  15. Mukhopadhyay AK, Mai Y-W. Grain size effect on abrasive wear mechanisms in alumina ceramics. Wear. 1993;162–164:258–68. doi:10.1016/0043-1648(93)90508-J.

    Article  Google Scholar 

  16. Miranda-Martinez M, Davidge RW, Riley FL. Grain size effects on the wet erosive wear of high-purity polycrystalline alumina. Wear. 1994;172:41–8. doi:10.1016/0043-1648(94)90297-6.

    Article  CAS  Google Scholar 

  17. Davidge RW, Riley FL. Grain-size dependence of the wear of alumina. Wear. 1995;186–187:45–9. doi:10.1016/0043-1648(95)07171-7.

    Article  Google Scholar 

  18. Galusek D, Twigg PC, Riley FL. Wet erosion of liquid phase sintered alumina. Wear. 1999;233–235:588–95. doi:10.1016/S0043-1648(99)00236-7.

    Article  Google Scholar 

  19. Krell A, Blank P, Ma H, Hutzler T, Nebelung M. Processing of high-density submicrometer Al2O3 for new applications. J Am Ceram Soc. 2003;86:546–53. doi:10.1111/j.1151-2916.2003.tb03339.

    Article  CAS  Google Scholar 

  20. Roy RS, Guchhait H, Chanda A, Basu D, Mitra MK. Improved sliding wear-resistance of alumina with sub-micron grain size: a comparison with coarser grained material. J Eur Ceram Soc. 2007;27:4737–43. doi:10.1016/j.jeurceramsoc.2007.02.205.

    Article  CAS  Google Scholar 

  21. Hsu Y-F, Wang S-F, Wang Y-R, Chen S-C. Effect of niobium doping on the densification and grain growth in alumina. Ceram Int. 2008;34:1183–7. doi:10.1016/j.ceramint.2007.02.010.

    Article  CAS  Google Scholar 

  22. Strnad Z. Glass-ceramic materials: glass science and technology. Amsterdam: Elsevier; 1986.

    Google Scholar 

  23. Höland W, Beall G. Glass-ceramic technology. Westerville: American Ceramic Society; 2002.

    Google Scholar 

  24. Montedo ORK, Bertan FM, Piccoli R, Hotza D, Klein AN, Oliveira APN. Low thermal expansion sintered LZSA glass-ceramics. Am Ceram Soc Bull. 2008;87:34–47.

    Google Scholar 

  25. Montedo ORK, Hotza D, Oliveira APN, Meszaros R, Travitzky N, Greil P. Crystallisation kinetics of a β-spodumene-based glass ceramic. Adv Mater Sci Eng. 2012;. doi:10.1155/2012/525428.

    Google Scholar 

  26. Montedo ORK, Floriano FJ, Oliveira Filho J, Angioletto E, Bernardin AM. Sintering behavior of LZSA glass-ceramics. Mater Res. 2009. doi:10.1590/S1516-14392009000200014.

  27. Montedo ORK, Floriano FJ, Oliveira Filho J. Sintering kinetics of a 18.8Li2O·8.3ZrO2·64.2SiO2·8.7Al2O3 glass ceramic. Ceram Int. 2011;37:1865–71. doi:10.1016/j.ceramint.2011.03.047.

    Article  CAS  Google Scholar 

  28. Montedo ORK, Oliveira APN. Relationship between surface abrasion wear and brightness in glazed porcelainized stoneware tiles. ISRN Ceram. 2011;2011:1–8. doi:10.5402/2011/548129.

    Article  Google Scholar 

  29. Paganelli M. In situ observation of ceramic tiles body batches sintering in fast firing cycles. Ind Ceram. 1996;16(1):1–6.

    CAS  Google Scholar 

  30. Frenkel J. Viscous flow of crystalline bodies under the action of surface tension. J Phys. 1945;9(5):385–91.

    Google Scholar 

  31. Zuo F, Saunier S, Marinel S, Chanin-Lambert P, Peillon N, Goeuriot D. Investigation of the mechanism(s) controlling microwave sintering of α-alumina: influence of the powder parameters on the grain growth, thermodynamics and densification kinetics. J Eur Ceram Soc. 2015;35:959–70. doi:10.1016/j.jeurceramsoc.2014.10.025.

    Article  CAS  Google Scholar 

  32. Goswami AP, Roy S, Mitra MK, Das GC. Influence of powder, chemistry and intergranular phases on the wear resistance of liquid-phase-sintered Al2O3. Wear. 2000;244:1–14. doi:10.1016/S0043-1648(00)00407-5.

    Article  CAS  Google Scholar 

  33. Goswami AP, Das GC. Role of fabrication route and sintering on wear and mechanical properties of liquid-phase-sintered alumina. Ceram Int. 2000;26:807–19. doi:10.1016/S0272-8842(00)00022-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) and Financiadora de Estudos e Projetos (FINEP/Brazil) for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. K. Montedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montedo, O.R.K., Milak, P.C., Minatto, F.D. et al. Effect of a LZSA glass-ceramic addition on the sintering behavior of alumina. J Therm Anal Calorim 124, 241–249 (2016). https://doi.org/10.1007/s10973-015-5144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5144-5

Keywords

Navigation