Skip to main content
Log in

Synthesis of pH-sensitive sulfonamide-based hydrogels with controllable crosslinking density by post thermo-curing

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Sulfonamide-containing linear copolymers were synthesized via copolymerization of N-(4-methacrylamido)-N′-(4,6-dimethylpyrimidin-2-yl) benzene-1-sulfonamide (SAM) and N,N′-dimethylacrylamide (DMAAm) via free-radical polymerization at room temperature using redox initiators. The redox-initiated polymerization could undergo nearly complete reaction in which the copolymer composition was almost the same as the feeding monomer ratio. These linear copolymers could be dissolved in water and displayed pH-sensitive properties around the physiological pH value of human body with a very sharp transition window less than 0.1 pH unit. Moreover, by introducing N-methyloyl acrylamide (NMA) monomer into the reaction system, the resulting copolymers could become crosslinked hydrogels when subjected to post thermo-curing through the NMA units. The crosslinking density and pH-sensitivity could be manipulated by changing the curing time and temperature. Therefore, swelling ratio and gel fraction of hydrogels could be accurately tailored. The pH-sensitive windows of these hydrogels were found to maintain in between 6.80 to 7.40, which implied that these hydrogels would be a suitable candidate for biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339. https://doi.org/10.1016/S0169-409X(01)00203-4

    Article  CAS  PubMed  Google Scholar 

  2. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236. https://doi.org/10.1016/j.addr.2012.09.009

    Article  Google Scholar 

  3. Lee KY, Mooney DJ (2001) Hydrogels for Tissue Engineering. Chem Rev 101(7):1869–1880. https://doi.org/10.1021/cr000108x

    Article  CAS  PubMed  Google Scholar 

  4. Babaladimath G, Badalamoole V (2018) Pectin-graft-poly(2-acrylamido-2-methyl-1- propane sulfonic acid) silver nanocomposite hydrogel beads: evaluation as matrix material for sustained release formulations of ketoprofen and antibacterial assay. J Polym Res 25(9):202

    Article  Google Scholar 

  5. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46. https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  PubMed  Google Scholar 

  6. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48(30):5418–5429. https://doi.org/10.1002/anie.200900441

    Article  CAS  Google Scholar 

  7. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251

    Article  CAS  Google Scholar 

  8. Ma L, Liu M, Liu H, Chen J, Cui D (2010) In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres. Int J Pharm 385(1–2):86–91. https://doi.org/10.1016/j.ijpharm.2009.10.037

    Article  CAS  PubMed  Google Scholar 

  9. Lin C-L, Chiu W-Y, Lee C-F (2006) Preparation, morphology, and thermoresponsive properties of poly(N-isopropylacrylamide)-based copolymer microgels. J Polym Sci Part A: Polym Chem 44(1):356–370. https://doi.org/10.1002/pola.21134

    Article  CAS  Google Scholar 

  10. Traitel T, Cohen Y, Kost J (2000) Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials 21(16):1679–1687

    Article  CAS  Google Scholar 

  11. Liu Y, Meng L, Lu X, Zhang L, He Y (2008) Thermo and pH sensitive fluorescent polymer sensor for metal cations in aqueous solution. Polym Adv Technol 19:137–143

    Article  CAS  Google Scholar 

  12. Zrínyi M (2000) Intelligent polymer gels controlled by magnetic fields. Colloid Polym Sci 278(2):98–103

    Article  Google Scholar 

  13. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  14. Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7(13):5908. https://doi.org/10.1039/c0sm01307b

    Article  CAS  Google Scholar 

  15. Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q, Zhang Q, Tan Y, Yue Q, Meng F (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25(8):169

    Article  Google Scholar 

  16. Khan A, Sajjad M, Khan E, Md. Akil H, Shah LA, Farooqi ZH (2017) Synthesis, characterization and physiochemical investigation of chitosan-based multi-responsive Copolymeric hydrogels. J Polym Res 24(10):170

    Article  Google Scholar 

  17. Lee AS, Bütün V, Vamvakaki M, Armes SP, Pople JA, Gast AP (2002) Structure of pH-dependent block copolymer micelles: charge and ionic strength dependence. Macromolecules 35(22):8540–8551

    Article  CAS  Google Scholar 

  18. Weaver JVM, Bannister I, Robinson KL, Bories-Azeau X, Armes SP, Smallridge M, McKenna P (2004) Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate. macromolecules 37(7):2395–2403. https://doi.org/10.1021/ma0356358

    Article  CAS  Google Scholar 

  19. Gan LH, Roshan Deen G, Gan YY, Tam KC (2001) Water sorption studies of new pH-responsive N-acryloyl-N′-methyl piperazine and methyl methacrylate hydrogels. Eur Polym J 37(7):1473–1478. https://doi.org/10.1016/S0014-3057(00)00250-0

    Article  CAS  Google Scholar 

  20. Yin X, Stöver HDH (2003) Hydrogel microspheres formed by complex coacervation of partially MPEG-grafted poly(styrene-alt-maleic anhydride) with PDADMAC and cross-linking with polyamines. Macromolecules 36(23):8773–8779. https://doi.org/10.1021/ma034617n

    Article  CAS  Google Scholar 

  21. Kurdtabar M, Koutenaee RN, Bardajee GR (2018) Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release. J Polym Res 25(5):119

    Article  Google Scholar 

  22. Ghamkhari A, Agbolaghi S, Poorgholy N, Massoumi B (2018) pH-responsive magnetic nanocomposites based on poly(2-succinyloxyethyl methacrylate-co-methylmethacrylate) for anticancer doxorubicin delivery applications. J Polym Res 25(2):37

    Article  Google Scholar 

  23. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2(4):343–366. https://doi.org/10.1016/S0167-8140(84)80077-8

    Article  CAS  PubMed  Google Scholar 

  24. Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69(4):522–530

    CAS  PubMed  Google Scholar 

  25. Kang SI, Bae YH (2002) pH-induced solubility transition of sulfonamide-based polymers. J Control Release 80(1–3):145–155. https://doi.org/10.1016/S0168-3659(02)00021-4

    Article  CAS  PubMed  Google Scholar 

  26. Park SY, Bae YH (1999) Novel pH-sensitive polymers containing sulfonamide groups. Macromol Rapid Commun 20(5):269–273

    Article  CAS  Google Scholar 

  27. Bae YH, Park SY (2000) pH-sensitive polymer containing sulfonamide and its synthesis method. US patent 6:103,865

    Google Scholar 

  28. Kang SI, Na K, Bae YH (2001) Sulfonamide-containing polymers: a new class of pH-sensitive polymers and gels. Macromol Symp 172:149–156

    Article  CAS  Google Scholar 

  29. Na K, Bae YH (2002) Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm Res 19(5):681–688

    Article  CAS  Google Scholar 

  30. Shim WS, Kim J-H, Park H, Kim K, Chan Kwon I, Lee DS (2006) Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(ε-caprolactone-co-lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-lactide) block copolymer. Biomaterials 27(30):5178–5185. https://doi.org/10.1016/j.biomaterials.2006.05.038

    Article  CAS  PubMed  Google Scholar 

  31. Sarac AS (1999) Redox polymerization. Prog Polym Sci 24(8):1149–1204. https://doi.org/10.1016/S0079-6700(99)00026-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trong-Ming Don or Wen-Yen Chiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CY., Don, TM., Lin, YT. et al. Synthesis of pH-sensitive sulfonamide-based hydrogels with controllable crosslinking density by post thermo-curing. J Polym Res 26, 18 (2019). https://doi.org/10.1007/s10965-018-1672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1672-6

Keywords

Navigation