Skip to main content
Log in

Characterization of ternary (Na0.5K0.5)1−x Li x NbO3 lead-free piezoelectric ceramics prepared by molten salt synthesis method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Na0.5K0.5)1−x Li x NbO3 powders and ceramics were prepared by molten salt synthesis method. Pure perovskite-phase powder was obtained at a low temperature of 740 °C with a grain size of below 800 nm. The effects of the LiNbO3 on phase transition, microstructure, electrical properties, and temperature stability were investigated. A morphotropic phase boundary was identified. The scanning electron microscopy indicated that the (Na0.5K0.5)1−x Li x NbO3 powders and ceramics obtained by the molten salt synthesis method have a relatively uniform particle size and microstructure. The results indicate that these materials are promising candidates for lead-free piezoelectric ceramics for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abraham T (2000) Am Ceram Bull 9:45

    Google Scholar 

  2. Tani T, Kimura T (2006) Adv Appl Ceram 105:55

    Article  CAS  Google Scholar 

  3. Cross E (2004) Nature 432:24

    Article  CAS  Google Scholar 

  4. Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J (2004) J Mater Res 19(6):1849

    Article  CAS  Google Scholar 

  5. Yoo J, Oh D, Jeong Y, Hong J, Jung M (2004) Mater Lett 58:3831

    Article  CAS  Google Scholar 

  6. Chiang YM, Farrey GW, Soukhojak AN (1998) Appl Phys Lett 73:3683

    Article  CAS  Google Scholar 

  7. Chu B, Chen D, Li G, Yin Q (2002) J Eur Ceram Soc 22:2115

    Article  CAS  Google Scholar 

  8. Park SE, Chung SJ (1996) J Am Ceram Soc 79:1290

    Article  CAS  Google Scholar 

  9. Kakimoto K, Masuda I, Ohsato H (2003) Jpn J Appl Phys 42:6102

    Article  CAS  Google Scholar 

  10. Guo Y, Kakimoto K, Ohsato H (2004) Solid State Commun 129:279

    Article  CAS  Google Scholar 

  11. Lin D, Xiao D, Zhu J, Yu P, Yan H, Li L (2004) Mater Lett 58:615

    Article  CAS  Google Scholar 

  12. Jaeger RE, Egerton L (1962) J Am Ceram Soc 45:209

    Article  CAS  Google Scholar 

  13. Haertling GH (1967) J Am Ceram Soc 50:329

    Article  CAS  Google Scholar 

  14. Wang XX, Chan HL, Choy CL (2003) J Am Ceram Soc 86(10):1809

    Article  CAS  Google Scholar 

  15. Takenaka T, Sakata K (1980) Jpn J Appl Phys 19:31

    Article  CAS  Google Scholar 

  16. Ringgaard E, Wurlitzer T (2005) J Eur Ceram Soc 25:2701

    Article  CAS  Google Scholar 

  17. Maeder MD, Damjanovic D, Setter N (2004) J Electroceram 13:385

    Article  CAS  Google Scholar 

  18. Guo Y, Kakimoto K, Ohsato H (2005) Mater Lett 59:241

    Article  CAS  Google Scholar 

  19. Guo Y, Kakimoto K, Ohsato H (2004) Appl Phys Lett 85:4121

    Article  CAS  Google Scholar 

  20. Wu JG, Xiao DQ, Wang YY, Zhu JG, Yu P, Jiang YH (2007) J Appl Phys 102:114113

    Article  Google Scholar 

  21. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84

    Article  CAS  Google Scholar 

  22. Zuo RZ, Ye C (2007) Appl Phys Lett 91:062916

    Article  Google Scholar 

  23. Zhang SJ, Xia R, Shrout TR (2007) Appl Phys Lett 91:132913

    Article  Google Scholar 

  24. Wu JG, Xiao DQ, Wang YY, Wu WJ, Zhang B, Li J, Zhua JG (2008) Scr Mater 59:750

    Article  CAS  Google Scholar 

  25. Matsubara M, Kikuta K, Hirano S (2005) J Appl Phys 97:114105

    Article  Google Scholar 

  26. Zhang SJ, Xia R, Shrout TR, Zang GZ, Wang JF (2007) Solid State Commun 141:675

    Article  CAS  Google Scholar 

  27. Wu JG, Xiao DQ, Wang YY, Zhu JG, Wu L, Jiang YH (2007) Appl Phys Lett 91:252907

    Article  Google Scholar 

  28. Wu JG, Wang YY, Xiao DQ, Zhu JG, Pu ZH (2007) Appl Phys Lett 91:132914

    Article  Google Scholar 

  29. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Appl Phys Lett 87:182905

    Article  Google Scholar 

  30. Du HL, Tang FS, Luo F, Zhu DM, Qu SB, Pei ZB, Zhou WH (2007) Mater Res Bull 42:1594

    Article  CAS  Google Scholar 

  31. Hou J, Qu Y, Ma W (2007) J Mater Sci 42:6787. doi:10.1007/s10853-006-1429-1

    Article  CAS  Google Scholar 

  32. West DL, Payne DA (2003) J Am Ceram Soc 86:192

    Article  CAS  Google Scholar 

  33. Pookmanee P, Rujijanagul G, Ananta S, Heimann RB, Phanichphant S (2002) J Eur Ceram Soc 24:517

    Article  Google Scholar 

  34. Katayama K, Azuma Y, Takahashi Y (1999) J Mater Sci 34:301. doi:10.1023/A:1004405605913

    Article  CAS  Google Scholar 

  35. Brahmaroutu B, Messing GL, Trolier-McKinstry S (1999) J Am Ceram Soc 82:1565

    Article  CAS  Google Scholar 

  36. Arendt RH (1973) J Solid State Chem 8:339

    Article  CAS  Google Scholar 

  37. Chen WW, Kume S, Watari K (2005) Mater Lett 59:3238

    Article  CAS  Google Scholar 

  38. Arent RH, Rosolowski ZH, Szymaszek JW (1979) Mater Res Bull 14:703

    Article  Google Scholar 

  39. The Institute of Electrical and Electronics Engineers (IEEE), Standards on Piezoelectricity, American National Standards Institute, ANSI/IEEE Std. (1987) p 176

  40. Cotton FA, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry. Wiley, New York

    Google Scholar 

  41. Li LT, Yao YJ, Mu ZH (1980) Ferroelectrics 28:403

    Article  Google Scholar 

  42. Hou YD, Zhu MK, Gao F, Wang H, Wang B, Yan H, Tian CS (2004) J Am Ceram Soc 87:847

    Article  CAS  Google Scholar 

  43. Randall CA, Kim N, Kucera JP, Cao W (1998) J Am Ceram Soc 81:677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jianhua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jianhua, L. Characterization of ternary (Na0.5K0.5)1−x Li x NbO3 lead-free piezoelectric ceramics prepared by molten salt synthesis method. J Mater Sci 46, 6364–6370 (2011). https://doi.org/10.1007/s10853-011-5583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5583-8

Keywords

Navigation