Skip to main content
Log in

Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dry sliding wear behavior of titanium matrix composite (TMC) reinforced by in situ TiB whisker and TiC particle was investigated. Compared to the unreinforced pure Ti matrix, the TMC exhibited a markedly improved wear resistance due to the existence of the ceramic reinforcements. The TMC showed lower friction coefficient than the pure Ti. The mean values of steady-state friction coefficient of the TMC and pure Ti against a tool steel were about 0.270–0.330 and 0.385–0.395, respectively, under the loads of 40–100 N. Meanwhile, the TMC showed lower weight loss and its surface wearing was less severe compared to that of the pure Ti. The worn surface of the TMC was covered with mild grooves and some fine wear debris, which exhibited the characteristic of both adhesive and abrasive. TiO2 was found on the worn surface due to the oxidation behavior of the Ti matrix, which may reduce the wear tendency of the TMC. The results show that the in situ ceramic reinforcements could greatly increase the wear resistance of pure Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brewer WD, Bird RK, Wallace TA (1998) Mater Sci Eng A 243:299

    Article  Google Scholar 

  2. Seagle SR (1996) Mater Sci Eng A 213:1

    Article  Google Scholar 

  3. Yamada M (1996) Mater Sci Eng A 213:8

    Article  Google Scholar 

  4. Marc L, Rack HJ (2001) Wear 249:158

    Google Scholar 

  5. La PQ, Ma JQ, Zhu YT, Yang J, Liu WM, Xue QJ, Valiev RZ (2005) Acta Mater 53:5167

    Article  CAS  Google Scholar 

  6. Lakshmi SG, Arivuoli D (2006) Tribol Int 39:548

    Article  Google Scholar 

  7. Alman DE, Hawk JA (1999) Wear 225–229:629

    Article  Google Scholar 

  8. Blau PJ, Jolly BC (2009) JMEPEG 18:424

    Article  CAS  Google Scholar 

  9. Wang F, Bi QL, Wang XB, Liu WM (2008) Tribol Int 41:158

    Article  CAS  Google Scholar 

  10. Ocelĺk V, Matthews D, De Hosson JThM (2005) Surf Coat Technol 197:303

    Article  Google Scholar 

  11. Atar E, Kayali ES, Cimenoglu H (2008) Surf Coat Technol 202:4583

    Article  CAS  Google Scholar 

  12. Lee CS, Oh JC, Lee S (2003) Metall Mater Trans A 34:1461

    Article  Google Scholar 

  13. Pu YP, Guo BG, Zhou JS, Zhang ST, Zhou HD, Chen JM (2008) Appl Surf Sci 255:2697

    Article  CAS  Google Scholar 

  14. Dong YJ, Wang HM (2009) Surf Coat Technol 204:731

    Article  CAS  Google Scholar 

  15. Candel JJ, Amigó V, Ramos JA, Busquets D (2010) Surf Coat Technol 204:3161

    Article  CAS  Google Scholar 

  16. Zhang S, Wu WT, Wang MC, Man HC (2001) Surf Coat Technol 138:95

    Article  CAS  Google Scholar 

  17. Zhou W, Zhao YG, Li W, Mei XL, Jiang QC (2008) Surf Coat Technol 202:1652

    Article  CAS  Google Scholar 

  18. Lee C, Sanders A, Tikekar N, Chandran KSR (2008) Wear 265:375

    Article  CAS  Google Scholar 

  19. Wang F, Mei J, Jiang H, Wu X (2007) Mater Sci Eng A 445–446:461

    Google Scholar 

  20. Hu RH, Lim JK (2010) Mater Des 31:2670

    Article  CAS  Google Scholar 

  21. Ranganath S (1997) J Mater Sci 32:1

    CAS  Google Scholar 

  22. Tjong SC, Ma ZY (2000) Mater Sci Eng R 29:49

    Article  Google Scholar 

  23. Tjong SC, Mai YW (2008) Compos Sci Technol 68:583

    Article  CAS  Google Scholar 

  24. Ma ZY, Tjong SC, Geng L (2000) Scripta Mater 42:367

    Article  Google Scholar 

  25. Lu WJ, Zhang D, Zhang XN, Wu RJ, Sakata T, Mori H (2001) Scripta Mater 44:2449

    Article  CAS  Google Scholar 

  26. Gorsse S, Miracle DB (2003) Acta Mater 51:2427

    Article  CAS  Google Scholar 

  27. Chandran KSR, Panda KB, Sahay SS (2004) JOM 56:42

    Article  CAS  Google Scholar 

  28. Saito T (2004) JOM 56:33

    Article  CAS  Google Scholar 

  29. Panda KB, Chandran KSR (2006) Acta Mater 54:1641

    Article  CAS  Google Scholar 

  30. Morsi K, Patel VV (2007) J Mater Sci 42:2037. doi:10.1007/s10853-006-0776-2

    Article  CAS  Google Scholar 

  31. Ni DR, Geng L, Zhang J, Zheng ZZ (2008) Mater Lett 62:686

    Article  CAS  Google Scholar 

  32. Hibi Y, Murakami T, Miyake K, Sasaki S (2008) J Am Ceram Soc 91:508

    Article  CAS  Google Scholar 

  33. Miyoshi K, Sanders JH, Hager CH Jr, Zabinski JS, Vander Wal RL, Andrews R, Street KW Jr, Lerch BA, Abel PB (2008) Tribol Int 41:24

    Article  CAS  Google Scholar 

  34. Dalili N, Edrisy A, Farokhzadeh K, Li J, Lo J, Riahi AR (2010) Wear 269:590

    Article  CAS  Google Scholar 

  35. Zhang EL, Zeng G, Zeng SY (2002) Scripta Mater 46:811

    Article  CAS  Google Scholar 

  36. Caracostas CA, Chiou WA, Fine ME, Cheng HS (1997) Metall Mater Trans A 28:491

    Article  Google Scholar 

  37. Zhao M, Wu GH, Jiang LT, Dou ZY (2006) Composites A 37:1916

    Article  Google Scholar 

  38. Li JL, Sun MR, Ma XX, Tang GZ (2006) Wear 261:1247

    Article  CAS  Google Scholar 

  39. Song HJ, Zhang ZZ (2008) Tribol Int 41:396

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is financially supported by National Natural Science Foundation of China under grant no. 50771039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Geng, L. & Ni, D. Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J Mater Sci 46, 4980–4985 (2011). https://doi.org/10.1007/s10853-011-5415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5415-x

Keywords

Navigation