Skip to main content

Advertisement

Log in

A Study on flexural properties of wildcane grass fiber-reinforced polyester composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The main objective of this study is to introduce a new natural fiber as reinforcement in polymers for making composites. Wildcane grass stalk fibers were extracted from its stem using retting and chemical (NaOH) extraction processes. These fibers were treated with KMnO4 solution to improve adhesion with matrix. The resulting fibers were intentionally reinforced in a polyester matrix unidirectionally, and the flexural properties of the composite were determined. The fibers extracted by retting process have a tensile strength of 159 MPa, modulus of 11.84 GPa, and an effective density of 0.844 g/cm3. The composites were formulated up to a maximum fiber volume fraction of 0.39, resulting in a flexural strength of 99.17 MPa and flexural modulus of 3.96 GPa for wildcane grass fibers extracted by retting. The flexural strength and the modulus of chemically extracted wildcane grass fiber composites have increased by approximately, 7 and 17%, respectively compared to those of composites made from fibers extracted by retting process. The flexural strength and the modulus of KMnO4-treated fiber composites have increased by 12 and 76% over those of composites made from fibers extracted by retting process and decreased by 3 and 48% over those of composites made from fibers extracted by chemical process, respectively. The results of this study indicate that wildcane grass fibers have potential as reinforcing fillers in plastics in order to produce inexpensive materials with high toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sabaa MW (1991) Polym Degrad Stab 32:209

    Article  CAS  Google Scholar 

  2. Ei-Naggar AM, Ei-Hosamy MB, Zahran AH, Zondy MH (1992) Am Dyestuff Rep 81:40

    Google Scholar 

  3. Yang GC, Zeng HM, Li JJ, Jian NB, Zhang WB (1996) Acta Sci Nat Univ Sunyat 35:53

    CAS  Google Scholar 

  4. Yan LI, Mai Yiu-Wing, Lin YE (2000) Comp Sci Tech 60:2037

    Article  Google Scholar 

  5. Mukherjee PS, Satyanarayana KG (1984) J Mater Sci 19:3925. doi:10.1007/BF00980755

    Article  CAS  Google Scholar 

  6. Mishra S, Naik JB, Patil YP (2000) Comp Sci Tech 60:1729

    Article  CAS  Google Scholar 

  7. Zhu WH, Tobias BC, Coutts RSP (1995) J Mater Sci Lett 14:508

    Article  CAS  Google Scholar 

  8. Sapun SM, Leenie A, Harimi M, Beng YK (2005) J Mater Des 28:689

    Google Scholar 

  9. Jain S, Jindal UC, Kumar Rakesh (1993) J Mater Sci Lett 12:558

    CAS  Google Scholar 

  10. Ismail H, Edyham MR, Wirjosentono B (2002) Polym Test 21:139

    Article  CAS  Google Scholar 

  11. Ismail H, Shuhelmy S, Edyham MR (2002) Eur Polym J 38:39

    Article  CAS  Google Scholar 

  12. Yao W, Li Z (2003) Cem Concr Res 33:15

    Article  CAS  Google Scholar 

  13. Okubo K, Fujji T, Yamamoto Y (2004) Composites Part A 35:377

    Article  Google Scholar 

  14. Ryoko T, Duc Minh Vu, Kazuya O, Tatsuya T, Toru F, Takayasu F (2008) J Mater Sci 43:775. doi:10.1007/s10853-007-1994-y

    Article  Google Scholar 

  15. de Albuquerque AC, Joseph K, de Carvalho LH, d’Almeida JRM (2000) Comp Sci Tech 60:833

    Article  Google Scholar 

  16. Gassan J, Bledzki AK (1999) J Appl Polym Sci 71:623

    Article  CAS  Google Scholar 

  17. Ghanshyam SC, Bhatt SS, Inderjeet K, Singha AS, Kaith BS (2000) Polym Degrad Stab 69:261

    Article  Google Scholar 

  18. Hepworth DG, Bruce DM, Vincent JFV, Jeronimidis G (2000) J Mater Sci 35:293. doi:10.1023/A:1004784931875

    Article  CAS  Google Scholar 

  19. Baiardo M, Zini E, Scandola M (2004) Composites Part A 35:703

    Article  Google Scholar 

  20. Bos HL, Molenveld K, teunissen W, Van Wingerde AM, Van Delft DRV (2004) J Mater Sci 39:2159. doi:10.1023/B:JMSC.0000017779.08041.49

    Article  CAS  Google Scholar 

  21. Rout J, Mishra M, Tripathy SS, Najak SK, Mohanty AK (2001) Comp Sci Tech 61:1303

    Article  CAS  Google Scholar 

  22. Monteiro SN, Terrones LAH, D’Almeida JRM (2008) Polym Test 27:591

    Article  CAS  Google Scholar 

  23. Wei Wang, Gu Huang (2009) J Mater Des 30:2741

    Article  Google Scholar 

  24. Umadevi L, Joseph K, Manikandan Nair KC, Thomas S (2004) J Appl Polym Sci 94:503

    Article  Google Scholar 

  25. Panthapulakkal S, Zereshkian A, Sain M (2006) Bioresour Technol 97:265

    Article  CAS  Google Scholar 

  26. Aziz SH, Ansell MP (2004) Comp Sci Tech 64:1219

    Article  CAS  Google Scholar 

  27. Graupner N, Hermann AS, Mussig J (2009) Composites Part A 40:810

    Article  Google Scholar 

  28. Hamid K, Alain D, Bertine K, Abdelkader B, Moha T, Mustapha R, Nathalie I, Henry S, Jean-Francois G, Noureddine S (2006) Composites Part A 37:1413

    Article  Google Scholar 

  29. Adriane SS, Marina ZF, Ana Paula TP, Denise AKS (2008) J Reinf Plast Compos 27:1805

    Article  Google Scholar 

  30. Lai WL, Mariatti M (2008) J Reinf Plast Compos 27:925

    Article  CAS  Google Scholar 

  31. Naoki S, Takashi U, Koichi G, Junji O (2009) J Mater Sci 44:2477. doi:10.1007/s10853-009-3317-y

    Article  Google Scholar 

  32. Davies P, Morvan C, Sire O, Baley C (2007) J Mater Sci 42:4850. doi:10.1007/s10853-006-0546-1

    Article  CAS  Google Scholar 

  33. Murali Mohan Rao K, Mohana Rao K, Ratna Prasad AV (2010) J Mater Des 31:508

    Article  CAS  Google Scholar 

  34. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) Composites Part A 41:1329

    Article  Google Scholar 

  35. Ratna Prasad AV, Murali Mohan Rao K, Mohana Rao K, Anil Kumar M (2006) Indian J Fiber Text Res 31:335

    Google Scholar 

  36. Romildo DTF, Karen S, George LE, Ghavami K (2000) Cem Concr Compos 22:127

    Article  Google Scholar 

  37. Geethamma VG, Thomas Mathew K, Lakshminarayanan R, Thomas Sabu (1998) Polymer 39:1483

    Article  CAS  Google Scholar 

  38. Muralimohan Rao K, Mohana Rao K (2007) Comp Struct 77:288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ratna Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A.V.R., Rao, K.M., Gupta, A.V.S.S.K.S. et al. A Study on flexural properties of wildcane grass fiber-reinforced polyester composites. J Mater Sci 46, 2627–2634 (2011). https://doi.org/10.1007/s10853-010-5117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5117-9

Keywords

Navigation