Skip to main content

Advertisement

Log in

Structure and properties of fibres from sea-grass (Zostera marina)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents results from a study of fibres extracted from Zostera marina eel-grass collected from the Baltic coast. This species of sea-grass is shown to contain small diameter (around 5 μm) fibres composed of ∼57% cellulose, ∼38% of non-cellulosic polysaccharides (mainly xylan) and ∼5% of residual matter so-called Klason lignin. This composition is quite different to that of commonly used terrestrial fibres. Single fibre stiffness values up to 28 GPa were measured. This stiffness combined with a low density could provide an attractive reinforcement for composite materials, and may be particularly suitable for use in bio-degradable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221

    Article  CAS  Google Scholar 

  2. Li Y, Mai Y-W, Ye L (2000) Comp Sci & Tech 60:2037

    Article  CAS  Google Scholar 

  3. Eichorn SJ et al (2001) J Mat Sci 36:2107

    Article  Google Scholar 

  4. Baley C (2002) Composites Part A 33:939

    Article  Google Scholar 

  5. den Hartog C (1970) The seagrasses of the world, North Holland Publishing Co., Amsterdam

    Google Scholar 

  6. Krause-Jensen D, Greve TM, Nielsen K (2005) Water Resour Manag 19:63

    Article  Google Scholar 

  7. Jenkins GP, May HMA, Wheatley MJ, Holloway MG (1997) Comparison of fish assemblages associated with seagrass and adjacent unvegetated habitats of Port Phillip Bay and Corner Inlet, Victoria, Australia, with Emphasis on Commercial Species, Estuarine, Coastal and Shelf Science, vol 44. 5, May 1997, 569

  8. Valencia ME, Atondo JL, Hernandez G (1985) Ecol Food Nutr 17:165

    Article  Google Scholar 

  9. Irving DW, Breda VA, Becker R, Saunders RM (1988) Ecol Food Nutr 20:263

    Article  Google Scholar 

  10. Hany R, Böhlen C, Geiger T, Schmid M, Zinn M (2004) Biomacromolecules 5(4):1452

    Article  CAS  Google Scholar 

  11. Phenolic acid sulphate esters for prevention of marine biofouling. United States Patent. Patent Number 5,607,741. Date of patent Mar. 4, 1997

  12. Davies GW (1980) Aquat Bot 8:281

    Article  Google Scholar 

  13. Read J, Smith HG (1919) Aust Inst Sci Ind Bull 14:1

    Google Scholar 

  14. Iannace S, Nocilla G, Nicolais L (1999) J Appl Poly Sci 73:583

    Article  CAS  Google Scholar 

  15. Morvan C, Ademe-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Plant Physiol Biochem 41:935

    Article  CAS  Google Scholar 

  16. Auby I (1991) Contribution à l’étude des herbiers de Zostera noltii dans le basin d’arcachon: dynamique, production et dégradation, macrofaune associée. PhD thesis (in French) Université de Bordeaux I, France

  17. D3822-01 Standard Test Method for Tensile Properties of Single Textile Fibers

  18. Blumenkrantz N, Asboe-Hansen G (1973) Anal Biochem 54:484

    Article  CAS  Google Scholar 

  19. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Anal Chem 28:350

    Article  CAS  Google Scholar 

  20. Goubet F, Bourlard T, Girault R, Alexandre C, Vandevelde MC, Morvan C (1995) Carbohydr Polym 27:221

    Article  CAS  Google Scholar 

  21. Nabi Saheb D, Jog JP (1999) Adv Polym Technol 18:351

    Article  Google Scholar 

  22. Bisanda ETN, Ansell MP (1992) J Mater Sci 27:1690

    Article  CAS  Google Scholar 

  23. Roe PJ, Ansell MP (1985) J Mater Sci 20:4015

    Article  CAS  Google Scholar 

  24. Mwaikambo LY, Ansell MP (1999) Die Angewandte Makromolekulare Chemie 272:108

    Article  CAS  Google Scholar 

  25. LeChat C, Bunsell AR, Davies P, Piant A (2006) J Mater Sci 41(6):1745

    Article  CAS  Google Scholar 

  26. Hull D (1981) An introduction to composite materials. Cambridge University Press, Cambridge, UK

  27. Garside P, Wyeth P (2003) Stud Conserv 48(4):269

    CAS  Google Scholar 

  28. Fry SC (1986) Ann Rev Plant Physiol 37:165

    CAS  Google Scholar 

  29. Aspinal GO (1959) Carbohydr Chem 14:429

    Google Scholar 

  30. Lewin M, Pearce EM (eds) (1998) Handbook of fibre science and technology. Marcel Dekker, New York. Vol IV, Fibre Chemistry, 505

  31. Batra SK Other long vegetable fibers. In: reference [30]

Download references

Acknowledgements

The authors acknowledge the assistance of Hervé LeDeit and Melanie Fadel in supplying samples, Sebastien Alix for the hand-cut sections of blades and carmin-green staining, and Gwennina Croizer for fibre extraction studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, P., Morvan, C., Sire, O. et al. Structure and properties of fibres from sea-grass (Zostera marina). J Mater Sci 42, 4850–4857 (2007). https://doi.org/10.1007/s10853-006-0546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0546-1

Keywords

Navigation