Skip to main content
Log in

Composites from water hyacinth (Eichhornea crassipe) and polyester resin

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fibrous plants are available in abundance in nature and are a renewable resource. The development of high performance composites from a cheap natural fiber, such as water hyacinth (Eichhornea crassipes) is particularly beneficial from an economic point of view. Remarkable, thermosetting resins such as polyester are used widely as a composite matrix due to polyester resins present a good dimensional stability, thermal stability, and good mechanical properties. For this study, some composites from water hyacinth fiber and polyester resin were prepared by using solution impregnation and hot curing methods. The composites were prepared by varying fiber percentages (5, 10, 15, and 20 wt%). These were characterized by FTIR and DSC analysis. Additionally, the elastic modules (MOE) from static test according to ASTM (D143-94) and by dynamic test from Sylvates Duo were obtained. Mechanical properties such as flexural strain and compression strength parallel of the different composites were analyzed. Thus, composites which had a concentration of water hyacinth in the range of 5 to 10 wt% yielded the best results. Additionally, the analysis showed no evidence of a negative effect on mechanical and thermal properties of the composite by addition of water hyacinth to the polyester resin. Furthermore, the results showed that water hyacinths fibres presented a competitive reinforcement quality when they were compared with other natural fibers, as such jute, abaca, and rice straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Chawla and J. R. M. D’Almeida, “Proc. of ICCM-IV IVth Int. Conf. Composite Materials”, p.1195, Tokyo, Japan, 1982.

    Google Scholar 

  2. K. G. Satyanarayana, K. Sukumaran, A. G. Kulkarni, S. G. K. Pillai, and P. K. Rohatgi, Composites, 17, 329 (1986).

    Article  CAS  Google Scholar 

  3. T. Rials, M. P. Wolcott, and J. M. Nassar, J. Appl. Polym. Sci., 80, 546 (2001).

    Article  CAS  Google Scholar 

  4. J. R. M. D’Almeida, Polymer Plast. Tech. Eng., 40, 205 (2000).

    Article  Google Scholar 

  5. Q. Mahmood, M. R. Siddiqi, E. Islam, M. R. Azim, P. Zheng, and Y. Hayat, J. Zhejiang Univ. Sci. B. 10, 991 (2005).

    Article  Google Scholar 

  6. M. Meerhoff, N. Mazzeo, B. Moss, and L. Rodríguez-Gallego, Aquat Ecol., 37, 377 (2003).

    Article  Google Scholar 

  7. P. Pranut, P. Prakaipech, and C. Saowaroj, J. Sci. Res. Chula. Univ., 26, 1 (2001).

    Google Scholar 

  8. O. Mansour, B. Abdel-Hady, S. K. Ibrahem, and M. Goda, Polymer Plast. Tech. Eng., 40, 311 (2001).

    Article  CAS  Google Scholar 

  9. H. U. Zaman, M. A. Khan, R. A. Khan, M. A. Rahman, L. R. Das, and M. Al-Mamun, Fiber. Polym., 11, 455 (2010).

    Article  CAS  Google Scholar 

  10. A. K. Rana, A. Mandal, and S. Bandyopadhyay, Compos. Sci. Technol., 63, 801 (2003).

    Article  CAS  Google Scholar 

  11. ASTM D143-14, Standard Test Methods for Small Clear Specimens of Timber, ASTM International, West Conshohocken, PA, 2014.

    Google Scholar 

  12. D. H. Williams and I. Fleming, “Spectroscopy Methods in Organic Chemistry”, 5th ed., pp.35–42, McGraw Hill, Maidenhead, England, 1995.

    Google Scholar 

  13. G. A. L. Verleye, N. P. G. Roeges, and M. O. De Moor, “Easy Identification of Plastic and Rubbers”, pp.115–134, Rapra Technology Ltd., Shrewsbury, UK, 2001.

    Google Scholar 

  14. U. Knuutinnen and P. Kyllonen, e-Preserv. Sci., 3, 11 (2006).

    Google Scholar 

  15. N. Shukry and B. S. Girgis, Polymer Plast. Tech. Eng., 31, 541 (1992).

    Article  CAS  Google Scholar 

  16. M. R. Huang and X. G. Li, J. Appl. Polym. Sci., 68, 293 (1998).

    Article  CAS  Google Scholar 

  17. S. Montserrat, C. Flaque, P. Pages, and J. Maek, J. Appl. Polym. Sci., 56, 1413 (1995).

    Article  CAS  Google Scholar 

  18. M. I. Aranguren, N. E. Marcovich, and M. M. Reboredo, Mol. Cryst. Liquid Cryst., 353, 95 (2000).

    Article  CAS  Google Scholar 

  19. A. Rohanová, R. Lagaňa, and V. Vacek, Annals of Warsaw University of Life Sciences-SGGW For. and Wood Technol., 72, 229 (2010).

    Google Scholar 

  20. H. Toker, E. Baysal, A. Özçifçi, M. Altinok, A. Sönmez, F. Yapici, and S. Altun, Wood Res., 53, 59 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Flores Ramirez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J. et al. Composites from water hyacinth (Eichhornea crassipe) and polyester resin. Fibers Polym 16, 196–200 (2015). https://doi.org/10.1007/s12221-015-0196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0196-5

Keywords

Navigation