Skip to main content
Log in

A hierarchical study of the mechanical properties of gypsum

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The flexural strength of gypsum is reported for freestanding single crystals in three-point bending carried with a nanoindenter. The elastic modulus, splitting tensile strength, and fracture toughness of monolithic gypsum consisting of interlocking needle-like microcrystals are also reported as functions of porosity and accelerator addition. This study shows that geometric configurations, in addition to porosity, affect the mechanical properties of gypsum. The properties are improved by 50–100% when the crystal network changes from needle aggregates to one made up of homogeneous randomly oriented single crystals. An Ashby geometric model for open-cell foams is adopted to link the properties of the individual crystals and the bulk properties. The lower and upper bounds of the measured elastic modulus are in accordance with bending-dominated behavior and stretch-dominated behavior predicted by the model, respectively. However, the strength of gypsum is much lower than values predicted by the model, which is based failure on fracture of individual crystals, suggesting that the strength of monolithic gypsum may be instead controlled by the failure of weak intercrystalline contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gibson LJ, Ashby MF (1997) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. Soroka I, Sereda PJ (1968) J Am Ceram Soc 51(6):337

    Article  CAS  Google Scholar 

  3. Vekinis G, Ashby MF, Beaumont PWR (1993) J Mater Sci 28:3221. doi:10.1007/BF00354239

    Article  CAS  ADS  Google Scholar 

  4. Sattler H (1997) ZKG Int 50(1):54

    CAS  Google Scholar 

  5. Meille S, Garboczi EJ (2001) Modell Simul Mater Sci Eng 9:371

    Article  ADS  Google Scholar 

  6. Jeulin D, Monnaie P, Peronnet F (2001) Cem Concr Compos 23:299

    Google Scholar 

  7. Singh NB, Middendorf B (2007) Prog Cryst Growth Char Mater 53(1):57

    Article  CAS  Google Scholar 

  8. Amathieu L, Boistelle R (1986) J Cryst Growth 79(1–3):169

    Article  CAS  ADS  Google Scholar 

  9. Osterwalder N, Loher S, Grass RN, Brunner TJ, Limbach LK, Halim SC, Stark WJ (2007) J Nanopart Res 9:275

    Article  CAS  Google Scholar 

  10. Constantinides G, Ulm F-J (2004) Cem Concr Res 34:67

    Article  CAS  Google Scholar 

  11. Kaul VS, Faber KT (2008) Scr Mater 58:886

    Article  CAS  Google Scholar 

  12. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Science 305(5686):986

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Schuster BE, Wei Q, Zhang H, Ramesh KT (2006) Appl Phys Lett 88(10):103112

    Article  ADS  Google Scholar 

  14. Lee D, Wei XD, Zhao M, Chen X, Jun SC, Hone J, Kysar JW (2007) Modell Simul Mater Sci Eng 15:S181

    Article  CAS  ADS  Google Scholar 

  15. Chen X, Xu Z, Li X, Shaibat MA, Ishii Y, Ruoff RS (2007) Carbon 45(2):416

    Article  CAS  Google Scholar 

  16. Satava V (1996) Ceramics-Silikaty 40(2):72

    CAS  Google Scholar 

  17. Oliver WC GM, Pharr GM (2004) J Mater Res 19:3

    Article  ADS  Google Scholar 

  18. ASTM Standard C769-98 (2005) Standard test method for sonic velocity in manufactured carbon and graphite materials for use in obtaining an approximate Young’s modulus

  19. ASTM Standard C1419-99a (2007) Standard test method for sonic velocity in refractory materials at room temperature and its use in obtaining an approximate Young’s modulus

  20. ASTM Standard E494-05 (2005) Standard practice for measuring ultrasonic velocity in materials

  21. Miller DP, Moslemi AA (1991) Wood Fiber Sci 23(4):472

    CAS  Google Scholar 

  22. Jonsén P, Häggblad H-Å, Sommer K (2006) Tensile strength and fracture energy of pressed metal powder by diametral compression test. Doctoral thesis, D1-D18

  23. ASTM C 1421-01b (2001) Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature

  24. Petrovic JJ, Milewski JV, Rohr DL, Gac FD (1985) J Mater Sci 20:1167. doi:10.1007/BF01026310

    Article  ADS  Google Scholar 

  25. Underwood EE (1970) Quantitative stereology. Addison-Wesley, Publishing Co., Inc., Reading, MA

    Google Scholar 

  26. Ashby MF (2006) Phil Trans R Soc A 364:15

    Article  CAS  PubMed  MathSciNet  ADS  Google Scholar 

  27. Tuncer E, Wegener M (2004) Mater Lett 58:2815

    Article  CAS  Google Scholar 

  28. Broz ME, Cook RF, Whitney DL (2006) Am Mineral 91:135

    Article  CAS  Google Scholar 

  29. Maalej M, Li VC (1994) J Mater Civ Eng 6(4):513

    Article  CAS  Google Scholar 

  30. Ohnishi S, Stewart AM (2002) Langmuir 18:6140

    Article  CAS  Google Scholar 

  31. Follner S, Wolter A, Helming K, Silber C, Bartels H, Follner H (2003) Cryst Res Technol 37(2–3):207

    Google Scholar 

  32. Coquard P, Boistelle R (1994) Int J Rock Mech Min Sci Geomech Ahslr 31(5):517

    Article  Google Scholar 

  33. Chappuis J (1999) Colloids Surf A Physicochem Eng Asp 156:223

    Article  CAS  Google Scholar 

  34. Israelachvili JN, Pashley RM (1983) Nature 17:249

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support for this study was provided by USG Corporation. The nanoindentation work was performed at the NIFTI facilities of NUANCE Center at Northwestern University. The SEM work was performed at the EPIC facilities of NUANCE Center. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Faber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Sucech, S. & Faber, K.T. A hierarchical study of the mechanical properties of gypsum. J Mater Sci 45, 4444–4453 (2010). https://doi.org/10.1007/s10853-010-4527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4527-z

Keywords

Navigation