Skip to main content

Advertisement

Log in

Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles

  • Original Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The preparation of calcium sulfate by flame synthesis resulted in the continuous production of anhydrite nanoparticles of 20–50 nm size. After compaction and hardening by the addition of water, the anhydrite nanoparticles reacted to nano-gypsum which was confirmed by X-ray diffraction, diffuse reflectance IR spectroscopy and thermal analysis. Mechanical properties were investigated in terms of Vickers hardness and revealed an up to three times higher hardness of nano-gypsum if compared to conventional micron-sized construction material. The improved mechanical properties of nano-gypsum could in part be due to the presence of calcium sulfate nano-needles in the nano-gypsum as showed by electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arabi-Katbi O.I., Pratsinis S.E., Morrison P.W. (2002). In situ infrared measurements on TiO2 flames: Gas and particle concentrations. AIChE J. 48(1):59–68

    Article  CAS  Google Scholar 

  • Arikan M., Sobolev K. (2002). The optimization of gypsum-based composite material. Cem. Concr. Res. 32:1725–1728

    Article  CAS  Google Scholar 

  • Bushuew N., Maselnnikow B.M., Borisov V.M. (1983). Phase transformations in the dehydration of CaSO4 2· H2O. Russ. J. Inorg. Chem. 28:1404

    Google Scholar 

  • Coquard P., Boistelle R., Amathieu L., Barriac P. (1994). Hardness, elasticity modulus and flexion strength of dry set plaster. J. Mater. Sci. 29:4611–4617

    Article  CAS  Google Scholar 

  • Gleiter H. (1989). Nanocrystalline materials. Progr. Mater. Sci. 33(4):223–315

    Article  CAS  Google Scholar 

  • Grass R.N., Stark W.J. (2005). Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride. Chem. Commun. 14:1767–1769

    Article  Google Scholar 

  • Grass R.N., Tsantillis S., Pratsinis S.E. (2006). Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates. AIChE J. 52:1318–1325

    Article  CAS  Google Scholar 

  • Hajjouji A.E., Murat M. (1987). Strength development and hydrate formation rate, investigation on anhydrite binders. Cem. Concr. Res. 17:814–822

    Article  Google Scholar 

  • Hand R.J. (1997). Calcium sulphate hydrates: A review. Br. Ceram. Trans. 96(3):116–120

    CAS  Google Scholar 

  • Harris P.E., Hoyer S., Lindquist T.J., Stanford C.M. (2004). Alterations of surface hardness with gypsum die hardeners. J. Prost. Dent. 92(July):35–38

    Article  CAS  Google Scholar 

  • Huber M., W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich & A. Baiker, 2005. Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. 648–650

  • Johannessen T., Jenson J.R., Mosleh M., Johansen J., Quaade U., Livbjerg H. (2004). Flame synthesis of nanoparticles – Applications in catalysis and product/process engineering. Chem. Eng. Res. & Design. 82(A11):1444–1452

    Article  CAS  Google Scholar 

  • Karni J., Karni E. (1995). Gypsum in construction: Origin and properties. Mater. Struct. 28:92–100

    Article  CAS  Google Scholar 

  • Kuang D.B., Xu A.W., Fang Y.P., Ou H.D., Liu H.Q. (2002). Preparation of inorganic salts (CaCO3, BaCO3, CaSO4) nanowires in the Triton X-100/cyclohexane/water reverse micelles. J. Crys. Growth. 244(3–4):379–383

    Article  CAS  Google Scholar 

  • Kumareson P., Devanarayanan S. (1992). Gypsum crystals grown in silica gel in the presence of citric acid as additive: A study on microhardness. J. Mater. Sci. Lett. 11:150–151

    Article  CAS  Google Scholar 

  • Luebke R.J., Chan K.C. (1985). Effect of microwave oven drying on surface hardness of dental gypsum products. J. Prosthet. Dent. 54(3):431–435

    Article  CAS  Google Scholar 

  • Madler L., Kammler H.K., Mueller R., Pratsinis S.E. (2002a). Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2):369–389

    Article  CAS  Google Scholar 

  • Madler L., Stark W.J., Pratsinis S.E. (2002b). Flame-made ceria nanoparticles. J. Mater. Res. 17(6):1356–1362

    CAS  Google Scholar 

  • Melo L.G.N., Nagata M.J.H., Bosco A.F., Ribeiro L.L.G., Leite C.M. (2005). Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clin. Oral Impl. Res. 16:683–691

    Article  Google Scholar 

  • Meyers M.A., Mishra A., Benson D.J. (2006). Mechanical properties of nanocrystalline materials. Progr. Mater. Sci. 51(4):427–556

    Article  CAS  Google Scholar 

  • Olsen D.W., 2004. Mineral Commodity Summaries. U.S. Geological Survey, pp. 76–77

  • Papageorgiou A., Tzouvalas G., Tsimas S. (2005). Use of inorganic setting retarders in cement industry. Cem. Concr. Res. 27:183–189

    Article  CAS  Google Scholar 

  • Peters C.P., Hines J.L., Bachus K.N., Craig M.A., Bloebaum R.D. (2005). Biological effects of calcium sulfate as bone graft substitute in ovine metaphyseal defects. J. Biomed. Mater. Res. A. 76A(3):456–462

    Google Scholar 

  • Rees G.D., Evans-Gowing R., Hammond S.J., Robinson B.H. (1999). Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions. Langmuir 15(6):1993–2002

    Article  CAS  Google Scholar 

  • Sandler S.I. (1999). Chemical and Engineering Thermodynamics. John Wiley & Sons, New York

    Google Scholar 

  • Sievert T., Wolter W., Singh N.B. (2005). Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill. Cem. Concr. Res. 35:623–630

    Article  CAS  Google Scholar 

  • Song X.Y., Sun S.X., Fan W.L., Yu H.Y. (2003). Preparation of different morphologies of calcium sulfate in organic media. J. Mater. Chem. 13(7):1817–1821

    Article  CAS  Google Scholar 

  • Stark W.J., Baiker A., Pratsinis S.E. (2002). Nanoparticle opportunities: Pilot-scale flame synthesis of vanadia/titania catalysts. Part. Part. Syst. Char. 19(5):306–311

    Article  CAS  Google Scholar 

  • Stark W.J., L. Mädler & S.E. Pratsinis, 2004. Metal oxides prepared by flame pyrolysis, WO2004/005184 2004

  • Stark W.J., Pratsinis S.E. (2002). Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2):103–108

    Article  CAS  Google Scholar 

  • Stark W.J., Wegner K., Pratsinis S.E., Baiker A. (2001). Flame aerosol synthesis of vanadia–titania nanoparticles: Structural and catalytic properties in the selective catalytic reduction of NO by NH3. J. Catal. 197(1):182–191

    Article  CAS  Google Scholar 

  • Xu C.H. (2005). Research and application of ceramic die materials. Rare Metal Mater. Eng. 34:262–265

    CAS  Google Scholar 

  • Zhan G.D., Mukherjee A.K. (2005). Processing and characterization of nanoceramic composites with interesting structural and functional properties. Rev. Adv. Mater. Sci. 10(3):185–196

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the ETH Zurich. The authors would like to thank Dr. F. Krumeich for transmission electron microscopy and Prof. L. J. Gaukler for SEM measuring time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendelin J. Stark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osterwalder, N., Loher, S., Grass, R.N. et al. Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles. J Nanopart Res 9, 275–281 (2007). https://doi.org/10.1007/s11051-006-9149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9149-7

Key words

Navigation