Skip to main content
Log in

Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation was carried out to explore the morphology and mechanical properties of diglycidyl ether of bisphenol A epoxy resin (DGEBA) with liquid natural rubber possessing hydroxyl functionality (HLNR). Though modification of epoxies by synthetic rubber has been extensively studied not much attention has been paid to liquid natural rubber. Photo depolymerisation of natural rubber enables us to synthesise low molecular weight oligomers by varying the experimental parameters. Epoxy resin was cured using nadic methyl anhydride as hardener in presence of N,N-dimethyl benzyl amine accelerator. Hydroxylated natural rubber of different concentrations is used as modifier for epoxy resin. The addition of such chemically modified liquid rubber to an anhydride hardener–epoxy resin mixture has given rise to the formation of a two-phase microstructure in the cured systems, consisting of spherical particles of liquid natural rubber strongly bonded to the surrounding matrix, there by providing the required mechanism for toughness enhancement. Subinclusions of epoxy resin were present in the elastomer domains as secondary particles (particle in particle morphology) as evidenced from the SEM (scanning electron micrograph) photomicrographs. The origin of the so-called secondary phase separation is due to the combined effect of hydrodynamics, viscoelastic effects of rubber phase, diffusion, surface tension, polymerisation reaction and phase separation. In a dynamic asymmetric system, the diffusion of the fast dynamic phase is prevented by the slow dynamic phase, and hence the growth of fast dynamic phase gets retarded due to the slow dynamic phase. In the case of low viscosity blends the growth of fast dynamic phase turns fast and hence diffusion of fast dynamic phase cannot follow geometrical growth and cannot establish local concentration equilibrium and hence double phase separation takes place. The double phase separation is responsible for the enhanced impact and toughness behaviour of the blends. The mechanical behaviour of the liquid rubber-modified epoxy resin was evaluated in terms of tensile and flexural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Potter WG (1970) Epoxide resins. Springer, New York

    Google Scholar 

  2. Mark HF, Bikales N, Overberger CG, Menges G, Kroschwitz JI (1986) Encyclopedia of polymer science and engineering, vol 6. Emulsion Polymerization to Fibers, Manufacture, 2nd edn. ISBN: 978-0-471-80050-7

  3. Brydson JA (1982) Plastic materials, chap 27, 4th edn. Butterworth Scientific, London

  4. Young RJ, Beaumont PWR (1977) J Mater Sci 12:684. doi:10.1007/BF00548158

    Article  CAS  ADS  Google Scholar 

  5. Moloney AC, Kausch HH, Stieger (1983) J Mater Sci 18:208. doi:10.1007/BF00543827

    Article  CAS  ADS  Google Scholar 

  6. Spanoudakis J, Young RJ (1984) J Mater Sci 19:473. doi:10.1007/BF02403234

    Article  CAS  ADS  Google Scholar 

  7. Pearson RA, Yee AF (1993) Polymer 34:3658

    Article  CAS  Google Scholar 

  8. Mc Garry FJ, Willner AM (1968) Research report R 68-6, School of Eng., Massachusetta Institute of Technology

  9. Garry FJMC, Sultan JN (1973) Polym Eng Sci 13:29

    Article  Google Scholar 

  10. Bucknall CB, Franco M, Mondragon I (1999) J Appl Polym Sci 72:427

    Article  Google Scholar 

  11. Franco M, Corcuera MA, Gavalda J, Vaka A, Mondragon I (1997) J Appl Polym Sci Part B Polym Phys 35:233

    Article  CAS  Google Scholar 

  12. Bucknal CB, Patreidge IK (1986) Polym Eng Sci 26:54

    Article  Google Scholar 

  13. Verchere D, Sautereau H, Pascault JP, Moschiar SM, Riccardi CC, Williams RJJ (1989) Polymer 30:107

    Article  CAS  Google Scholar 

  14. Ratna D, Banthia AK, Deb PC (2000) J Appl Polym Sci 78:717

    Article  Google Scholar 

  15. Bascom WD, Cottington RL, Jones RL, Peyser P (1975) J Appl Polym Sci 19:2425

    Article  Google Scholar 

  16. Manzione LT, Gillham JK, Mc Pherson CA (1981) J Appl Polym Sci 26:884

    Google Scholar 

  17. Latha PB, Adhinarayanan K, Ramaswamy R (1994) Int J Adhes Adhes 14:57

    Article  CAS  Google Scholar 

  18. Sheng X, Lee JK, Kessler MR (2009) Polymer 50(5):1264

    Article  CAS  Google Scholar 

  19. Deng S, Zhang J, Ye L, Wu J (2008) Polymer 49(23):5119

    Article  CAS  Google Scholar 

  20. Sham ML, Kim JK (2005) J Appl Polym Sci 96(1):175

    Article  CAS  Google Scholar 

  21. Ruiz-Pérez L, Royston GJ, Fairclough J, Anthony Ryan AJ (2008) Polymer 49(21):4475

    Article  Google Scholar 

  22. Francis B, Rao VL, Poel GV, Posada F, Groeninckx G, Ramaswamy R, Thomas S (2006) Polymer 47(15):5411

    Article  CAS  Google Scholar 

  23. Nanda Kumar SA, Denchev Z (2009) Prog Org Coat 66(1):1

    Article  Google Scholar 

  24. Tanaka H, Araki T (1998) Phys Rev Lett 81:389

    Article  CAS  ADS  Google Scholar 

  25. Tanaka H (1992) Macromolecules 25:6377

    Article  CAS  ADS  Google Scholar 

  26. Tanaka H (1995) J Chem Phys 103:2361

    Article  CAS  ADS  Google Scholar 

  27. Tanaka H (1996) J Chem Phys 105:10099

    Article  CAS  ADS  Google Scholar 

  28. HUO Y, Jiang X, Zhang H, Yang Y (2003) Chem Phys 118:9830

    CAS  ADS  Google Scholar 

  29. Ravindran T, Gopinathan Nair MR, Joseph Francis D (1988) J Appl Polym Sci 35:1227

    Article  CAS  Google Scholar 

  30. Ratna D, Banthia AK (2000) Polym Int 49:281

    Article  CAS  Google Scholar 

  31. Ratna D, Banthia AK, Deb PC (2001) J Appl Polym Sci 80:1792

    Article  CAS  Google Scholar 

  32. Rajalingam P, Radhakrishnan G, Francis JD (1991) J Appl Polym Sci 43(7):1385

    Article  CAS  Google Scholar 

  33. Nirmal SN, Maithi C, Padmavathi T, Vanaja A, Rao RMVGK (2006) High Perform Polym 18:57

    Article  CAS  Google Scholar 

  34. Demerdash GAAG, Sayed Ahmed WAA (2007) High Perform Polym 19:439

    Article  Google Scholar 

  35. Ijima T, Yoshika N, Tomoi M (1992) Eur Polym J 28:573

    Article  Google Scholar 

  36. Willam RJJ, Borrajo J, Adabbo HE, Rojas AJ (1984) Rubber-modified thermoset resins. Adv Chem Ser 208, chap 13. ACS, Washington, DC, pp 195–213

  37. Riew CK (1989) Rubber toughened plastics. Adv Chem Ser 222. ACS, Washington, DC

  38. Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers Ltd, London, New York. ISBN: 0-85334-186-9

    Google Scholar 

  39. Bagheri R, Pearson RA (1996) J Mater Sci 31:3945. doi:10.1007/BF00352655

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, V.S., Sinturel, C., George, S.C. et al. Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. J Mater Sci 45, 1769–1781 (2010). https://doi.org/10.1007/s10853-009-4154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4154-8

Keywords

Navigation