Skip to main content
Log in

Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were fabricated using solidification processing followed by hot extrusion and T5 heat treatment. Agglomeration of Al2O3 nanoparticles was observed in the nanocomposites. However, in the case of ZK60A/1.0 vol%Al2O3 nanocomposite (compared to monolithic ZK60A), increase in tensile strength (up to 14%) without significant decrease in ductility and simultaneous increase in compressive strength (up to 12%) and ductility (+23%) were observed. Here, the strength of ZK60A was increased without significant decrease in ductility. On the other hand, in the case of ZK60A/1.5 vol%Al2O3 nanocomposite (compared to monolithic ZK60A), simultaneous increase in tensile strength (up to 6%) and ductility (+26%), but decrease in compressive strength (up to 40%) with increase in ductility (+43%) were observed. Here, the ductility of ZK60A was significantly increased without significant increase in strength. This tailoring of tensile and compressive properties of ZK60A via integration with Al2O3 nanoparticles are investigated in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Google Scholar 

  2. Brandes EA, Brook GB (eds) (1998) Smithells light metals handbook. Reed Educational and Professional Publishing Ltd, USA, p 40

    Google Scholar 

  3. Ferkel H, Mordike BL (2001) Mater Sci Eng A 298:193

    Article  Google Scholar 

  4. Hassan SF, Gupta M (2006) Compos Struct 72:19

    Article  Google Scholar 

  5. Hassan SF, Gupta M (2006) J Mater Sci 41:2229. doi:10.1007/s10853-006-7178-3

    Article  CAS  ADS  Google Scholar 

  6. Goh CS, Wei J, Lee LC, Gupta M (2006) Nanotechnology 17:7

    Article  CAS  ADS  Google Scholar 

  7. Hassan SF, Gupta M (2002) J Alloys Compd 345:246

    Article  CAS  Google Scholar 

  8. Perez P, Garces G, Adeva P (2004) Compos Sci Technol 64:145

    Article  CAS  Google Scholar 

  9. Wong WLE, Gupta M (2005) Adv Eng Mater 7:250

    Article  Google Scholar 

  10. Hassan SF, Gupta M (2002) J Alloys Compd 335:L10

    Article  CAS  Google Scholar 

  11. Huard G, Angers R, Krishnadev MR, Tremblay R, Dube D (1999) Can Metall Q 38:193

    Article  CAS  Google Scholar 

  12. Lapovok R, Thomson PF, Cottam R, Estrin Y (2005) Mater Sci Eng A 410–411:390

    Google Scholar 

  13. Kim WJ, Kim MJ, Wang JY (2009) Mater Sci Eng A. doi:10.1016/j.msea.2009.08.064

  14. Watanabe H, Mukai T, Higashi K (1999) Scripta Mater 40(4):477

    Article  CAS  Google Scholar 

  15. Nieh TG, Schwartz AJ, Wadsworth J (1996) Mater Sci Eng A 208:30

    Article  Google Scholar 

  16. Yan F, Wu K, Wu GL, Lee BL, Zhao M (2003) Mater Lett 57:1992

    Article  CAS  Google Scholar 

  17. Feng Y, Zhou X, Min Z, Kun W (2005) Scripta Mater 53:361

    CAS  Google Scholar 

  18. Sasaki G, Wang WG, Hasegawa Y, Choi YB, Fuyama N, Matsugi K, Yanagisawa O (2007) J Mater Proc Technol 187–188:429

    Article  Google Scholar 

  19. Tham LM, Gupta M, Cheng L (1999) Mater Sci Technol 15:1139

    CAS  Google Scholar 

  20. Gupta M, Lai MO, Lim SC (1997) J Alloys Compd 260:250

    Article  CAS  Google Scholar 

  21. Ugandhar S, Gupta M, Sinha SK (2006) Compos Struct 72:266

    Article  Google Scholar 

  22. Lim SCV, Gupta M (2006) Mater Sci Technol 19:803

    Article  Google Scholar 

  23. Paramsothy M, Srikanth N, Hassan SF, Gupta M (2008) Mater Sci Eng A 494:436

    Article  Google Scholar 

  24. Paramsothy M, Hassan SF, Srikanth N, Gupta M (2008) J Phys D 41:175402

    Article  ADS  Google Scholar 

  25. Paramsothy M, Hassan SF, Srikanth N, Gupta M (2009) J Alloys Compd 482:73

    Article  CAS  Google Scholar 

  26. Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM International®, Ohio, p 10, 40

    Google Scholar 

  27. Evans JT (1986) Acta Metall 34(10):2075

    Article  CAS  Google Scholar 

  28. Guden M, Akil O, Tasdemirci A, Ciftcioglu M, Hall IW (2006) Mater Sci Eng A 425:145

    Article  Google Scholar 

  29. Han BQ, Dunand DC (2000) Mater Sci Eng A 277:297

    Article  Google Scholar 

  30. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures, vol 3. Pergamon Materials Series, Pergamon, New York

    Google Scholar 

  31. Gilchrist JD (1989) Extraction metallurgy, vol 3. Pergamon Press, New York

    Google Scholar 

  32. Gupta M, Lai MO, Soo CY (1996) Mater Sci Eng A 210:114

    Article  Google Scholar 

  33. Hassan SF, Gupta M (2006) J Alloys Compd 419:84

    Article  CAS  Google Scholar 

  34. Hassan SF, Gupta M (2005) Metall Mater Trans A 36(8):2253

    Article  Google Scholar 

  35. Szaraz Z, Trojanova Z, Cabbibo M, Evangelista E (2007) Mater Sci Eng A 462:225

    Article  Google Scholar 

  36. Dai LH, Ling Z, Bai YL (2001) Compos Sci Technol 61:1057

    Article  CAS  Google Scholar 

  37. Hull D, Bacon DJ (2002) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford, p 43, 231

    Google Scholar 

  38. Laser T, Hartig C, Nurnberg MR, Letzig D, Bormann R (2008) Acta Mater 56:2791

    Article  CAS  Google Scholar 

  39. Bohlen J, Yi SB, Swiostek J, Letzig D, Brokmeier HG, Kainer KU (2005) Scripta Mater 53:259

    Article  CAS  Google Scholar 

  40. Hassan SF, Gupta M (2007) J Alloys Compd 429:176

    Article  CAS  Google Scholar 

  41. Spencer K, Corbin SF, Lloyd DJ (2002) Mater Sci Eng A 325:394

    Article  Google Scholar 

  42. Hu XH, Jain M, Wilkinson DS, Mishra RK (2008) Acta Mater 56:3187. doi:10.1016/j.actamat.2008.02.048

    Article  CAS  Google Scholar 

  43. Paramsothy M, Srikanth N, Gupta M (2008) J Alloys Compd 461:200

    Article  CAS  Google Scholar 

  44. Reed-Hill RE (1964) Physical metallurgy principles, 2nd edn. D Van Nostrand Company, New York, p 192 267, 725

    Google Scholar 

  45. Purazrang K, Abachi P, Kainer KU (1994) Composites 25(4):296

    Article  CAS  Google Scholar 

  46. Ho KF, Gupta M, Srivatsan TS (2004) Mater Sci Eng A 369:302

    Article  Google Scholar 

  47. Towle DJ, Friend CM (1993) Mater Sci Technol 9:35

    CAS  Google Scholar 

Download references

Acknowledgements

M. Paramsothy is the principle author of this article and acknowledges A. Balaji for microstructural and tensile characterization, and P. Jayaramanavar for compressive characterization. K.S. Tun and Q.B. Nguyen are acknowledged for their kind assistance in processing and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaramanavar, P., Paramsothy, M., Balaji, A. et al. Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45, 1170–1178 (2010). https://doi.org/10.1007/s10853-009-4059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4059-6

Keywords

Navigation