Skip to main content
Log in

Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement

  • Communications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A magnesium-based composite with 1.1 volume percentage of nanosized Al2O3 particulates reinforcement was fabricated using an innovative disintegrated melt deposition technique followed by hot extrusion. Al2O3 particulates with an equivalent size of 50 nm were used as reinforcement. Microstructural characterization of the materials revealed grain refinement of magnesium matrix due to incorporation, retention, and uniform distribution of reinforcement. Physical properties characterization revealed that the addition of nano-Al2O3 particulates as reinforcement improves the dimensional stability of pure magnesium. Mechanical properties characterization revealed that the presence of nano-Al2O3 particulates as reinforcement leads to a significant increase in microhardness, dynamic elastic modulus, 0.2 pct yield strength (YS), ultimate tensile strength (UTS), and ductility of pure magnesium. The results revealed that the combined tensile properties of these materials are superior when compared to Mg reinforced with much higher volume percentage of SiC. An attempt is made in the present study to correlate the effect of nano-Al2O3 particulates as reinforcement with the microstructural, physical, and mechanical properties of magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S.F. Hassan and M. Gupta: J. Mater. Sci., 2002, vol. 37, pp. 2467–74.

    Article  CAS  Google Scholar 

  2. M. Gupta, M.O. Lai, and D. Saravanaranganathan: J. Mater. Sci., 2000, vol. 35, pp. 2155–65.

    Article  CAS  Google Scholar 

  3. R. Unverricht, V. Peitz, W. Riehemann, and H. Ferkel: Proc. Conf. on Magnesium Alloys and Their Applications, Wolfsburg, Germany, 1998, Werkstoff-Information Sgesellschaft, Wolfsburg, Germany, pp. 327–32.

    Google Scholar 

  4. H. Ferkel and B.L. Mordike: Mater. Sci. Eng. A, 2001, vol. 298A, pp. 193–99.

    Google Scholar 

  5. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39 (1), pp. 1–23.

    CAS  Google Scholar 

  6. S. Guldberg, H. Westengen, and D.L. Albright: Technical Paper No. 910830, SAE, Warrendale, PA, 1990, pp. 1–4.

    Google Scholar 

  7. A. Luo: Matall. Mater. Trans. A, 1995, vol. 26A, pp. 2445–55.

    CAS  Google Scholar 

  8. M. Gupta and T.S. Srivatsan: J. Mater. Eng. Performance, 1999, vol. 8 (4), pp. 473–78.

    Article  CAS  Google Scholar 

  9. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pregamon Materials Series, Elsevier, Oxford, United Kingdom, 1999, vol. 3, pp. 198–260.

    Google Scholar 

  10. M.F. Ashby and D.R.H. Jones: Engineering Materials I, Butterworth-Heinemann, Oxford, Boston, MA, 1996, pp. 34 and 86.

    Google Scholar 

  11. R. Morrell: Handbook of Properties of Technical and Engineering Ceramics, Part 1: An Introduction for the Engineer and Designer, Her Majesty’s Stationary Office, London, 1985, pp. 82 and 95.

    Google Scholar 

  12. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  13. L.M. Tham, M. Gupta, and L. Cheng: Mater. Sci. Technol., 1999, vol. 15 (10), pp. 1139–46.

    CAS  Google Scholar 

  14. W. Thomson: Theory of Vibrations with Applications, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 1993, pp. 281–83.

    Google Scholar 

  15. Y.C. Lee, A.K. Dahle, and D.H. St John: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2895–2906.

    CAS  Google Scholar 

  16. P.G. Shewmon: Transformation in Metals, McGraw-Hill Book Co., New York, NY, 1969, p. 69.

    Google Scholar 

  17. R.E. Reed-Hill: Physical Metallurgy Principles, 2nd ed., Van Nostrand Co., New York, NY, 1964, pp. 267 and 753.

    Google Scholar 

  18. E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, London, 1998, p. 15–2.

    Google Scholar 

  19. M. Gupta, F. Mohamed, E. Lavernia, and T.S. Srivatsan: J. Mater. Sci., 1993, vol. 28, pp. 2245–59.

    Article  CAS  Google Scholar 

  20. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Boston, MA, 1975, pp. 202–08.

    Google Scholar 

  21. George S. Ansell: in Physical Metallurgy, R.W. Cahn, ed., North-Holland Publishing Company, Amsterdam, 1970, p. 1083.

    Google Scholar 

  22. ASM Metal Reference Book, 3rd ed., Michael Bauccio, ed., ASM INTERNATIONAL, Materials Park, OH, 1993, p. 145.

    Google Scholar 

  23. F. Wua, J. Zhua, Y. Chen, and G. Zhang: Mater. Sci. Eng. A, 2000, vol. 277A, pp. 143–47.

    Google Scholar 

  24. A.L. Geiger and J.A. Walker: JOM, 1991, vol. 43, pp. 8–15.

    CAS  Google Scholar 

  25. Wei Yang and W.B. Lee: Materials Research and Engineering, Springer-Verlag, Berlin, 1993, p. 361.

    Google Scholar 

  26. P. Perez, G. Garces, and P. Adeva: Comp. Sci. Technol., 2004, vol. 64, pp. 145–51.

    Article  CAS  Google Scholar 

  27. S.F. Hassan and M. Gupta: J. Alloys Compounds, 2000, vol. 345, pp. 246–51.

    Article  Google Scholar 

  28. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Scripta Mater., 2001, vol. 45, pp. 89–94.

    Article  CAS  Google Scholar 

  29. A.G. Guy: Elements of Physical Metallurgy, 2nd ed., Addison-Wesley, New York, NY, 1967, p. 233.

    Google Scholar 

  30. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  31. Properties and Selection: Non-Ferrous Alloys and Special-Purpose Materials vol. 2, ASM Handbook, ASM INTERNATIONAL, Metals Park, OH, 1990, p. 1134.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, S.F., Gupta, M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A 36, 2253–2258 (2005). https://doi.org/10.1007/s11661-005-0344-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0344-4

Keywords

Navigation