Skip to main content
Log in

Dependence of luminescence properties on composition of rare-earth activated (oxy)nitrides phosphors for white-LEDs applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare-earth-activated nitride and oxynitride phosphors are attractive converter materials for white-LEDs applications due to their efficient luminescent characteristics, high thermal and chemical stabilities because their basic crystal structure is built on rigid tetrahedral networks, either of the Si–(O,N) or Al–(O,N) type. Recent progress in fluorescence properties of silicon–aluminum–(oxy)nitride-based luminescent materials with broad excitation bands activated by Eu2+, Ce3+, and Yb2+ for phosphor-converted white-LEDs are reviewed in this article, with the emphasis on the dependence of luminescence properties on composition. We elaborate on these composition-dependent properties in three sections: (i) Eu2+-activated nitride and oxynitride phosphors; (ii) Ce3+-activated nitride and oxynitride phosphors; and (iii) Yb2+-doped α-SiAlON phosphor. Eu2+- or Ce3+-activated nitride and oxynitride phosphors are categorized into four parts following the structural and/or composition characteristics, i.e., α-SiAlON, β-SiAlON, oxonitridosilicates, nitridoalumosilicates, and nitridosilicates. Some involving aspects for designing and the trends of research and development of these phosphors are addressed at the end of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nakamura S, Fasol G (1996) The blue laser: GaN based light emitters and lasers. Springer, Berlin

    Google Scholar 

  2. Jüstel T, Nikel H, Ronda C (1998) Angew Chem Int Ed 37:3084

    Article  Google Scholar 

  3. Shionoya S, Yen WM (1999) Phosphor handbook. CRC Press, New York

    Google Scholar 

  4. Xu R, Su M (2004) Luminescence and luminescent materials. Chemical Industry Press, Beijing (In Chinese)

    Google Scholar 

  5. Schubert EF, Kim JK (2005) Science 308:1274

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Phillips JM, Coltrin ME, Crawford MH, Fischer AJ, Krames MR, Regina M-M, Mueller GO, Ohno Y, Rohwer LES, Simmons JA, Tsao JY (2007) Laser Photon Rev 1(4):307

    Article  CAS  Google Scholar 

  7. Luo X, Cao W, Sun F (2008) Chinese Sci Bull 53(19):2923

    Article  CAS  Google Scholar 

  8. Yang WJ, Luo LY, Chen TM, Wang NS (2005) Chem Mater 17:3883

    Article  CAS  Google Scholar 

  9. Jang HS, Yang HS, Kim SW, Han JY, Lee SG, Jeon DY (2008) Adv Mater 20:2696

    Article  CAS  Google Scholar 

  10. He XH, Zhu Y (2008) J Mater Sci 43(5):1515

    Article  ADS  CAS  Google Scholar 

  11. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Google Scholar 

  12. Setlur AA, Heward WJ, Hannah ME, Happek U (2008) Chem Mater 20:6277

    Article  CAS  Google Scholar 

  13. Lu CH, Jagannathan R (2002) Appl Phys Lett 80(19):3608

    Article  ADS  CAS  Google Scholar 

  14. Kong L, Gan S, Hong G, You H, Zhang J (2008) Chem J Chinese Univ 29(4):673

    CAS  Google Scholar 

  15. Xie RJ, Hirosaki N (2007) Sci Technol Adv Mater 8:588

    Article  CAS  Google Scholar 

  16. Luo X (2008) J Chin Ceram Soc 36(9):1335 (In Chinese)

    CAS  Google Scholar 

  17. Yamada T, Yamao T, Sakata S (2007) Key Eng Mater 352:173

    Article  CAS  Google Scholar 

  18. Hampshire S, Park HK, Thompson DP, Jack KH (1978) Nature 274:880

    Article  ADS  CAS  Google Scholar 

  19. Ekstrom T, Nygren M (1992) J Am Ceram Soc 75:259

    Article  Google Scholar 

  20. Cao GZ, Metselaar R (1991) Chem Mater 3:242

    Article  CAS  Google Scholar 

  21. Karunaratne BSB, Lumby RJ, Lewis MH (1996) J Mater Res 11(11):2790

    Article  ADS  CAS  Google Scholar 

  22. Shen ZJ, Nygren M, Halenius U (1997) J Mater Sci Lett 16:263

    Article  CAS  Google Scholar 

  23. Xie RJ, Hirosaki N, Sakuma K et al (2004) Appl Phys Lett 84(26):5404

    Article  ADS  CAS  Google Scholar 

  24. Xie RJ, Hirosaki N, Mitomo M et al (2004) J Phys Chem B 108:12027

    Article  CAS  Google Scholar 

  25. Sakuma K, Hirosaki N, Xie RJ (2007) J Lumin 126:843

    Article  CAS  Google Scholar 

  26. Jang Y, Park JS, Kim JS, Han SO, Kim HS, Ahn YS, Yoo SJ. J Electroceram. doi:10.1007/s10832-008-9446-x

  27. Sakuma K, Hirosaki N, Xie RJ, Yamamoto Y, Suehiro T (2006) Phys Stat Sol (c) 3(8):2701

    Article  CAS  Google Scholar 

  28. Sakuma K, Hirosaki N, Xie RJ, Yamamoto Y, Suehiro T (2007) Mater Lett 61:547

    Article  CAS  Google Scholar 

  29. Xie RJ, Hirosaki N, Mitomo M, Sakuma K, Kimura N (2006) Appl Phys Lett 89:241103

    Article  ADS  CAS  Google Scholar 

  30. Xie RJ, Hirosaki N, Mitomo M, Takahashi K, Sakuma K (2006) Appl Phys Lett 88:101104

    Article  ADS  CAS  Google Scholar 

  31. Mandal H, Hoffmann MJ (1999) J Am Ceram Soc 82(1):229

    Article  CAS  Google Scholar 

  32. Mitomo M, Ishida A (1999) J Eur Ceram Soc 19:7

    Article  CAS  Google Scholar 

  33. Mandal H, Thompson DP, Ekstrom T (1993) J Eur Ceram Soc 12:421

    Article  CAS  Google Scholar 

  34. Shen Z, Ekstrom T, Nygren M (1996) J Eur Ceram Soc 16:873

    Article  CAS  Google Scholar 

  35. Mandal H, Thompson DP (1999) J Eur Ceram Soc 19:543

    Article  CAS  Google Scholar 

  36. Oyama Y, Kamigaito O (1971) Jpn J Appl Phys 10:1637

    Article  ADS  CAS  Google Scholar 

  37. Jack KH, Wilson WI (1972) Nat Phys Sci (London) 238:28

    ADS  Google Scholar 

  38. Jack KH (1976) J Mater Sci 11:1135. doi:10.1007/BF02396649

    Article  ADS  CAS  Google Scholar 

  39. Ekstrom T, Nygren M (1992) J Am Ceram Soc 75(2):259

    Article  Google Scholar 

  40. Petzow G, Herrmann M (2002) Struct Bonding 102:47

    Article  CAS  Google Scholar 

  41. Hirosaki N, Xie RJ, Kimoto K, Sekiguchi T, Yamamoto Y, Suehiro T, Mitomo M (2005) Appl Phys Lett 86:211905

    Article  ADS  CAS  Google Scholar 

  42. Xie RJ, Hirosaki N, Li HL, Li YQ, Mitomo M (2007) J Electrochem Soc 154(10):J314

    Article  CAS  Google Scholar 

  43. Kimura N, Sakuma K, Hirafune S, Asano K, Hirosaki N, Xie RJ (2007) Appl Phys Lett 90:051109

    Article  ADS  CAS  Google Scholar 

  44. Zhou Y, Yoshizawa Y, Hirao K et al (2008) J Am Ceram Soc 91(9):3082

    Article  CAS  Google Scholar 

  45. van Krevel JWH, Hintzen HT, Metselaar R, Meijerink A (1998) J Alloys Compd 268:272

    Article  Google Scholar 

  46. Li YQ, Delsing ACA, de With G, Hintzen HT (2005) Chem Mater 17:3242

    Article  CAS  Google Scholar 

  47. Yun BG, Miyamoto Y, Yamamoto H (2007) J Electrochem Soc 154(10):J320

    Article  CAS  Google Scholar 

  48. Bachmann V, Jüstel T, Meijerink A, Ronda C, Schmidt PJ (2006) J Lumin 121:441

    Article  CAS  Google Scholar 

  49. Yun BG, Machida K, Yamamoto H (2007) J Ceram Soc Jpn 115(10):619

    Article  CAS  Google Scholar 

  50. Zhang M, Wang J, Zhang Z, Zhang Q, Su Q (2008) Appl Phys B 93:829

    Article  ADS  CAS  Google Scholar 

  51. Bachmann V, Ronda C, Oeckler O, Schnick W, Meijerink A (2009) Chem Mater 21(2):316

    Article  CAS  Google Scholar 

  52. Liu RS, Liu YH, Bagkar NC, Hu SF (2007) Appl Phys Lett 91:061119

    Article  ADS  CAS  Google Scholar 

  53. Hölsä J, Jungner H, Lastusaari M, Niittykoski J (2001) J Alloys Compd 323–324:326

    Article  Google Scholar 

  54. Li YQ, With GD, Hintzen HT (2006) J Electrochem Soc 153(4):G278

    Article  CAS  Google Scholar 

  55. Hőppe HA, Stadler F, Oeckler O, Schnick W (2004) Angew Chem Int Ed 43:5540

    Article  CAS  Google Scholar 

  56. Stadler F, Oeckler O, Hőppe HA, Mçller MH, Pçttgen R, Mosel BD, Schmidt P, Duppel V, Simon A, Schnick W (2006) Chem Eur J 12:6984

    Article  CAS  Google Scholar 

  57. Oeckler O, Stadler F, Rosenthal T, Schnick W (2007) Solid State Sci 9:205

    Article  ADS  CAS  Google Scholar 

  58. Kechele JA, Oeckler O, Stadler F, Schnick W (2009) Solid State Sci 11:537

    Article  CAS  Google Scholar 

  59. Hintzen HT, Li YQ (2004) World Patent WO2004/029177A1

  60. Fiedler T, Fries T, Jermann F, Zachau M, Zwaschka F (2005) World Patent WO2005/061659A1

  61. Schmidt PJ, Mayr W, Meyer J, Schreinemacher B (2006) World Patent WO2006/095284A1

  62. Lin YS, Tseng YH, Liu RS, Chan JCC (2007) J Electrochem Soc 154(2):P16

    Article  CAS  Google Scholar 

  63. Xie RJ, Hirosaki N, Yamamoto Y, Suehiro T, Mitomo M, Sakuma K (2005) J Ceram Soc Jpn 13(7):462

    Article  Google Scholar 

  64. Shen Z, Grins J, Esmaeilzadeh S, Ehrenberg H (1999) J Mater Chem 9:1019

    Article  CAS  Google Scholar 

  65. Lauterbach R, Schnick W (1998) Z Anorg All Chem 624(7):1154

    Article  CAS  Google Scholar 

  66. Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H (2006) Electrochem Solid State Lett 9(4):H22

    Article  CAS  Google Scholar 

  67. Uheda K, Hirosaki N, Yamamoto H (2006) Phys Stat Sol (a) 203(11):2712

    Article  ADS  CAS  Google Scholar 

  68. Piao X, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N (2007) Chem Mater 19:4592

    Article  CAS  Google Scholar 

  69. Li J, Watanabe T, Wada H, Setoyama T, Yoshimura M (2007) Chem Mater 19:3592

    Article  CAS  Google Scholar 

  70. Mikami M, Watanabe H, Uheda K, Shimooka S, Shimomura Y, Kurushima T, Kijima N (2009) IOP Conf Ser Mater Sci Eng 1:012002

    Article  CAS  Google Scholar 

  71. Watanabe H, Wada H, Seki K, Itou M, Kijima N (2008) J Electrochem Soc 155(3):F31

    Article  CAS  Google Scholar 

  72. Watanabe H, Kijima N (2009) J Alloys Compd 475:434

    Article  CAS  Google Scholar 

  73. Watanabe H, Yamane H, Kijima N (2008) J Solid State Chem 181:1848

    Article  ADS  CAS  Google Scholar 

  74. Hőppe HA, Lutz H, Morys P, Schnick W, Seilmeier A (2000) J Phys Chem Solids 61:2001

    Article  ADS  Google Scholar 

  75. Piao X, Machida K, Horikawa T, Hanzawa H (2007) Appl Phys Lett 91:041908

    Article  ADS  CAS  Google Scholar 

  76. Li YQ, van Steen JEJ, van Krevel JWH, Botty G, Delsing ACA, DiSalvo FJ, de With G, Hintzen HT (2006) J Alloys Compd 417:273

    Article  CAS  Google Scholar 

  77. Piao X, Horikawa T, Hanzawa H, Machida K (2006) J Electrochem Soc 153(12):H232

    Article  CAS  Google Scholar 

  78. Piao X, Horikawa T, Hanzawa H, Machida K (2006) Appl Phys Lett 88:161908

    Article  ADS  CAS  Google Scholar 

  79. Xie RJ, Hirosaki N, Suehiro T, Xu FF, Mitomo M (2006) Chem Mater 18:5578

    Article  CAS  Google Scholar 

  80. Li YQ, de With G, Hintzen HT (2008) J Solid State Chem 181(3):515

    Article  ADS  CAS  Google Scholar 

  81. Zeuner M, Hintze F, Schnick W (2009) Chem Mater 21:336

    Article  CAS  Google Scholar 

  82. Römer SR, Braun C, Oeckler O, Schmidt PJ, Kroll P, Schnick W (2008) Chem Eur J 14:7892

    Article  CAS  Google Scholar 

  83. Xie RJ, Hirosaki N, Kimura N, Sakuma K, Mitomo M (2007) Appl Phys Lett 90:191101

    Article  ADS  CAS  Google Scholar 

  84. Toquin RL, Cheetham AK (2006) Chem Phys Lett 423:352

    Article  ADS  CAS  Google Scholar 

  85. Duan CJ, Wang XJ, Otten WM, Delsing ACA, Zhao Z, Hintzen HTJM (2008) Chem Mater 20:1597

    Article  CAS  Google Scholar 

  86. Li YQ, Hirosaki N, Xie RJ, Takeka T, Mitomo M (2008) J Solid State Chem. doi:10.1016/j.jssc.2008.10.031

  87. Li YQ, Fang CM, de With G, Hintzen HT (2004) J Solid State Chem 177:4687

    Article  ADS  CAS  Google Scholar 

  88. Li YQ, de With G, Hintzen HT (2004) J Alloys Compd 385:1

    Article  CAS  Google Scholar 

  89. Li YQ (2005) Structure and luminescence properties of novel rare-earth doped silicon nitride based materials. PhD Thesis, Eindhoven University of Technology

  90. Shioi K, Hirosaki N, Xie RJ, Takeda T, Li YQ (2008) J Mater Sci 43:5659. doi:10.1007/s10853-008-2764-1

    Article  ADS  CAS  Google Scholar 

  91. Huang Z, Sun W, Yan D (1985) J Mater Sci Lett 4:255

    Article  Google Scholar 

  92. Mikami M, Uheda K, Kijima N (2006) Phys Stat Sol (a) 203:2705

    Article  ADS  CAS  Google Scholar 

  93. Regina MM, Mueller G, Krames MR, Höppe HA, Stadler F, Schnick W, Juestel T, Schmidt P (2005) Phys Stat Sol (a) 202:1727

    Article  ADS  CAS  Google Scholar 

  94. Huppertz H, Schnick W (1997) Acta Crystallogr C 53:1751

    Article  Google Scholar 

  95. Schlieper T, Milius W, Schnick W (1995) Z Anorg Allg Chem 621:1380

    Article  CAS  Google Scholar 

  96. Yamada M, Naitou T, Izuno K, Tamaki H, Murazaki Y, Kameshima M, Mukai T (2003) Jpn J Appl Phys 42:L20

    Article  ADS  CAS  Google Scholar 

  97. Schmidt P, Tuecks A, Meyer J, Bechtel H, Wiechert D, Mueller-Mach R, Mueller G, Schnick W (2007) Proc SPIE-Int Soc Opt Eng 6669:66690P/1

    CAS  Google Scholar 

  98. Stadler F, Oeckler O, Senker J, Hőppe HA, Kroll P, Schnick W (2005) Angew Chem Int Ed 44:567

    Article  CAS  Google Scholar 

  99. van Krevel JWH, van Rutten JWT, Mandal H, Hintzen HT, Metselaar R (2002) J Solid State Chem 165:19

    Article  ADS  CAS  Google Scholar 

  100. Xie RJ, Hirosaki N, Mitomo M, Suehiro T, Xu X, Tanaka H (2005) J Am Ceram Soc 88(10):2883

    Article  CAS  Google Scholar 

  101. Grins J, Shen Z, Nygren M, Ekström T (1995) J Mater Chem 5:2001

    Article  CAS  Google Scholar 

  102. Takahashi K, Hirosaki N, Xie RJ, Harada M, Yoshimura K, Tomomura Y (2007) Appl Phys Lett 91:091923

    Article  ADS  CAS  Google Scholar 

  103. Li YQ, Hirosaki N, Xie RJ, Takeda T, Mitomo M (2008) Chem Mater 20(21):6704

    Article  CAS  Google Scholar 

  104. Li YQ, de With G, Hintzen HT (2006) J Lumin 116:107

    Article  CAS  Google Scholar 

  105. Kück S (2001) Appl Phys B 72:515

    ADS  Google Scholar 

  106. Xie RJ, Hirosaki N, Mitomo M et al (2005) J Phys Chem B 109:9490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Research Project of the Jiangsu Higher Education Institutions (08KJD150014) and QingLan Project of the Jiangsu Province, China (2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Hong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, XH., Lian, N., Sun, JH. et al. Dependence of luminescence properties on composition of rare-earth activated (oxy)nitrides phosphors for white-LEDs applications. J Mater Sci 44, 4763–4775 (2009). https://doi.org/10.1007/s10853-009-3668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3668-4

Keywords

Navigation