Skip to main content

Advertisement

Log in

Extraction and characterization of natural hydroxyapatite derived from animal bones using the thermal treatment process

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) is a phosphocalcic biomaterial commonly applied in bone implants because of its high similarity to the natural bone in its composition and osteoconductive properties. The present study is designed to study the Physico-chemical properties of different bone samples, including bovine, ovine, and chicken, exposed to two different temperatures of calcination: 600 and 1000 °C. For this purpose, chemical analysis (ICP-AES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDX) have been employed. The outcomes of the physical–chemical analyses confirm that the prepared biomaterial from the calcined bones is hydroxylapatite (HAp). At 1000 °C, a complete decomposition of the carbonate occurred and therefore an apatitic structure was formed. However, the FT-IR spectra display the existence of hydroxyl (OH-) and phosphate (PO43-) groups. XRD results indicate that the crystalline phase produced during the thermal decomposition of bone powders at 1000 °C corresponds to HAp. Thus, the crystal size and the crystallinity degree rise gradually with the temperature of calcination. The chemical analysis of the bone samples reports the dominance of the elements P and Ca forming a Ca/P ratio corresponding to the Ca/P molar ratio of non-stoichiometric HAp. These analyses clearly show that the hydroxyapatite from animal bones is physicochemically similar to the standard hydroxyapatite, and could be used as biomaterial in bone grafting and other biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Ferraro, M. Anton, V. Santé-Lhoutellier, The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: functionality, bioactivity and trends of application. Trends. Food. Sci. Technol. 51, 65 (2016)

    Article  CAS  Google Scholar 

  2. H. Khandelwal, S. Prakash, Synthesis and characterization of hydroxyapatite powder by eggshell. JMMCE 4(2), 119 (2016)

    Article  CAS  Google Scholar 

  3. J. Venkatesan, B. Lowe, P. Manivasagan et al., Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8(8), 5426 (2015)

    Article  CAS  Google Scholar 

  4. N. Bano, S.S. Jikan, H. Basri, S. Adzila, D.M. Zago, XRD and FTIR study of A&B type carbonated hydroxyapatite extracted from bovine bone. AIP Conf. Proc. 2068, 020100 (2019)

    Article  Google Scholar 

  5. H. Karampour, M. Ahmadi Parsa, A. HeidaryMoghadam, B. Pourhasan, R. Ashiri, Facile solution-based synthesis of impurity-free hydroxyapatite nanocrystals at ambient conditions. J. Mater. Res. Technol. 16, 656 (2022)

    Article  CAS  Google Scholar 

  6. J. Venkatesan, Z.J. Qian, B. Ryu, N. Kumar Ashok, S.K. Kim, Preparation and characterization of carbon nanotube-grafted-chitosan—Natural hydroxyapatite composite for bone tissue engineering. Carbohyd. Polym. 83(2), 569 (2010)

    Article  Google Scholar 

  7. S.A. Humair, L.K. Pickering, M.R. Mucalo, A review on the use of hydroxyapatite carbonaceous structure composites in bone replacement materials for strengthening purposes. Materials 11(10), 1813 (2018)

    Article  Google Scholar 

  8. D. Marija, J. Ana, M.S. Vesna, Electrophoretic deposition of biocompatible and bioactive hydroxyapatite-based coatings on titanium. Materials 14, 5391 (2021)

    Article  Google Scholar 

  9. J. Venkatesan, S.K. Kim, Chitosan composites for bone tissue engineering- an overview. Mar. Drugs 8(8), 2252 (2010)

    Article  CAS  Google Scholar 

  10. H. Juliano, F. Gapsari, H. Izzuddin, T. Sudiro, K. Yuarno, W. Sukmajaya, Z. Zuliantoni, T.M. Putri, A.M. Sulaiman, HA/ZrO2 Coating on CoCr alloy using flame thermal spray. Evergreen 2(9), 254–261 (2022)

    Article  Google Scholar 

  11. V.N. Narwade, K.A. Bogle, V. Kokol, Hydrothermally synthesized hydroxyapatite cellulose composites thick films as ammonia gas sensor. Emergent mater. 5, 445–454 (2022)

    Article  CAS  Google Scholar 

  12. M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, R. Hussain, Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49(4), 1461–1475 (2014)

    Article  CAS  Google Scholar 

  13. N.A.S.M. Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, T.C. Lee, Syntheses of hydroxyapatite from natural sources. Heliyon 5(5), 01588 (2019)

    Google Scholar 

  14. Z. Zuliantoni, W. Suprapto, P.H. Setyarini, F. Gapsari, Extraction and characterization of snail shell waste hydroxyapatite. Results Eng. 14, 100390 (2022)

    Article  CAS  Google Scholar 

  15. R. Ouafi, I. Atemni, I. Mehdaoui, M. Asri, M. Taleb, Z. Rais, Spectroscopic analysis of chemical compounds derived from the calcination of snail shells waste at different temperatures. Chemistry Africa 4, 923 (2021)

    Article  CAS  Google Scholar 

  16. N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, H.Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J. Mater. Process. Technol. 209(7), 3408 (2009)

    Article  CAS  Google Scholar 

  17. K. Han, A. Sathiyaseelan, K. Saravanakumar, M. Wang, Wound healing efficacy of biocompatible hydroxyapatite from bovine bone waste for bone tissue engineering application. J. Environ. Chem. Eng. 10(1), 106888 (2022)

    Article  CAS  Google Scholar 

  18. J. K. Odusote, Y. Danyuo, A. D. Baruwa, A. A. Azeez, Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J. Appl. Biomater. Funct. Mater. 17 (2), 1−7 (2019)

  19. J. Huang, J. Ratnayake, N. Ramesh, G.J. Dias, Development and characterization of a biocomposite material from Chitosan and New Zealand-Sourced Bovine-Derived Hydroxyapatite for Bone Regeneration. ACS Omega 5, 16537–16546 (2020)

    Article  CAS  Google Scholar 

  20. R. Liu, W. Qiao, B. Huang, Z. Chen, J. Fang, Z. Li, Z. Chen, Fluorination enhances the osteogenic capacity of porcine hydroxyapatite. Tissue Eng. 24, 15–16 (2018)

    Google Scholar 

  21. K.P. Malla, S. Regmi, A. Nepal, S. Bhattarai, R.J. Yadav, S. Sakurai, R. Adhikari, Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone. Int. J. Biomat. 2020, 1−10 (2020)

  22. A. Cahyanto, E. Kosasih, D. Aripin, Z. Hasratiningsih, Fabrication of hydroxyapatite from fish bones waste using reflux method. IOP Conf. Ser. Mater. Sci. Eng. 172, 012006 (2017)

    Article  Google Scholar 

  23. P. Surya, A. Nithin, A. Sundaramanickam, M. Sathish, Synthesis and characterization of nano-hydroxyapatite from sardinella longiceps fish bone and its effects on human osteoblast bone cells. J. Mech. Behav. Biomed. Mater. 119, 104501 (2021)

  24. S.M.H. Dabiri, A.A. Rezaie, M. Moghimi et al., Extraction of hydroxyapatite from fish bones and its application in nickel adsorption. BioNanoSci. 8, 823–834 (2018)

    Article  Google Scholar 

  25. G. Aydin, P. Terzioglu, H. Ogut, A. Kalemtas, Production, characterization, and cytotoxicity of calcium phosphate ceramics derived from the bone of meagre fish Argyrosomus regius. J. Australian Ceram. Soc. 57, 37–46 (2021)

    Article  CAS  Google Scholar 

  26. A.G. Farombi, O.S. Amuda, A.O. Alade, A.A. Okoya, S.A. Adebisi, Central composite design for optimization of preparation conditions and characterization of hydroxyapatite produced from catfish bones. BJBAS. 7(4), 474–480 (2018)

    Google Scholar 

  27. S.A. Chattanathan, T.P. Clement, S.R. Kanel, M.O. Barnett, N. Chatakondi, Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Wat. Air And Soil Poll 224(2), 1429 (2013)

    Article  Google Scholar 

  28. C. Piccirillo, M.F. Silva, R.C. Pullar et al., “Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C. 33(1), 103–110 (2013)

    Article  CAS  Google Scholar 

  29. S. Mondal, S. Mahata, S. Kundu, B. Mondal, Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv. Appl. Ceram. 109(4), 234 (2010)

    Article  CAS  Google Scholar 

  30. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, G. Janusas, Comparing methods for calculating nano crystal size of natural hydroxyapatite using x-ray diffraction. Nanomaterials 10(9), 1627 (2020)

    Article  CAS  Google Scholar 

  31. K. Haberko, M.M. Buc’ko, J. Brzezin’ska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, J. Zare˛bski, Natural hydroxyapatite—its behaviour during heat treatment. J. Eur. Ceram. Soc. 26, 537 (2006)

    Article  CAS  Google Scholar 

  32. S. Ramesh, Z.Z. Loo, C.Y. Tan, W.J. Kelvin Chew, Y.C. Ching, F. Tarlochan, H. Chandran, S. Krishnasamy, L.T. Bang, A.A.D. Sarhan, Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceram. Int. 44(9), 10525 (2018)

    Article  CAS  Google Scholar 

  33. N.A.M. Barakat, K.A. Khalil, F.A. Sheikh et al., “Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater. Sci. Eng 28(8), 1381–1387 (2008)

    Article  CAS  Google Scholar 

  34. A. Indra, A.B. Putra, N. Handra, H. Fahmi, Nurzal, Asfarizal, M. Perdana, Anrinal, A. Subardi, J. Affi, Gunawarman, Behavior of sintered body properties of hydroxyapatite ceramics: effect of uniaxial pressure on green body fabrication. Mater. Today Sustain. 17, 100100 (2022)

  35. D.R. Katti, S.M. Pradhan, K.S. Katti, Directional dependence of hydroxyapatite-collagen interactions on mechanics of collagen. J. Biomech. 43, 1723 (2010)

    Article  Google Scholar 

  36. F. Peters, K. Schwarz, M. Epple, The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim. Acta 361(1–2), 131 (2000)

    Article  CAS  Google Scholar 

  37. L.D. Mkukuma, J.M.S. Skakle, I.R. Gibson, C.T. Imrie, R.M. Aspden, D.W.L. Hukins, Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif. Tissue Int. 75(4), 321 (2004)

    Article  CAS  Google Scholar 

  38. E. Landi, G. Celotti, G. Logroscino, A. Tampieri, Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 23(15), 2931 (2003)

    Article  CAS  Google Scholar 

  39. I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield, Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate. J. Mater. Sci. Mater. Med. 11, 799–804 (2000)

  40. D.A. Nowicki, J.M.S. Skakle, I.R. Gibson, Faster synthesis of A-type carbonated hydroxyapatite powders prepared by high-temperature reaction. Adv. Powder. Technol. 31(8), 3318 (2020)

    Article  CAS  Google Scholar 

  41. S. Campisi, C. Castellano, A. Gervasini, Tailoring structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper(II) and lead(II) ions. New. J. Chem. 42(6), 4520 (2018)

    Article  CAS  Google Scholar 

  42. D. Marion, F. Ned C. Webb: Calcif. Tissue Res. 6, 335 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Atemni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atemni, I., Ouafi, R., Hjouji, K. et al. Extraction and characterization of natural hydroxyapatite derived from animal bones using the thermal treatment process. emergent mater. 6, 551–560 (2023). https://doi.org/10.1007/s42247-022-00444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00444-1

Keywords

Navigation