Skip to main content

Advertisement

Log in

Preparation and Microstructural Characterization of Natural Hydroxyapatite Extracted from Animal Bones

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An attempt has been made to optimize the heating treatment temperature of a fresh bovine bone sample using thermogravimetric and differential thermal analysis (TGA/DTA) between room temperature and 1000°C in atmospheric air. It has been shown that the organic matter and carbonate have been totally removed from the washed bone powder after calcining at 800°C. To investigate the effect of the residence time of the thermal treatment at 800°C on the crystallinity and the morphology of the hydroxyapatite (HA) samples, FTIR-ATR produced crystalline indices (CIs) calculated for 1 h, 6 h, 12 h, 24 h and 48 h as holding times are compared to those obtained through XRD. Scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) analyses were also performed. The CI result shows that, quantitatively speaking, the values obtained by these two techniques were not comparable although the general trends were similar. From SEM pictures and the corresponding EDX results, the samples subjected to calcination at 800°C had relatively the same sized spherical morphology and the same Ca/P ratios close to the standard one (≈ 1.67) regardless of the preparative calcining time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Barua, D. Apurba Das, A.B. Pamu, P.D. Deogharea, S.D. Lalaa, and S. Chatterjeec, Ceram. Int. 45, 23265 (2019).

    Google Scholar 

  2. W. Khoo, F.M. Nor, H. Ardhyananta, and D. Kurniawan, Proced. Manuf. 2, 196 (2015).

    Google Scholar 

  3. J. Reyes-Gasga, E.L. Martínez-Piñeiro, G. Rodríguez-Álvarez, G.E. Tiznado-Orozco, R. García-García, and E.F. Brès, Mater. Sci. Eng. C 33, 4568 (2013).

    Google Scholar 

  4. Y.X. Pang and X. Bao, Eur. Ceram. Soc. 23, 1697 (2003).

    Google Scholar 

  5. T.J.U. Thompson, M. Islam, K. Piduru, and A. Marcel, Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 168 (2011).

    Google Scholar 

  6. G. Piga, A. Malgosa, and T.J.U.S. ThompsonEnzo, J. Archaeol. Sci. 35, 2171 (2008).

    Google Scholar 

  7. M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, M.W. Wildan, and J.A. Toque, J. Mater. Sci. Eng. C 29, 1674 (2009).

    Google Scholar 

  8. S. Ramesh, Z.Z. Loo, C.Y. Tan, W.J. Kelvin Chew, Y.C. Ching, F. Tarlochan, S. Hari Chandran, L.T.B. Krishnasamy, and A.A.D. Sarhan, Ceram. Int. 44(9), 10525 (2018).

    Google Scholar 

  9. A.F.A. Yazdi, A. Yazdani T, T. Khozani and M. Kalantar, (2013) Sci. Intl. https://doi.org/10.5567/sciintl.2013.132.138

  10. M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, and R. Hussain, J. Mater. Sci 49, 1461 (2014).

    Google Scholar 

  11. H. Kweon and K. Lee, J. Oral Maxillofac. Surg. 69, 1578 (2011).

    Google Scholar 

  12. E. Bouyer, F. Gitzhofer, and M.I. Boulos, J. Mater. Sci.: Mater. Med. 11, 523 (2000).

    Google Scholar 

  13. E. Landi, A. Tampieri, G. Celotti, and S. Sprio, J. Eur. Ceram. Soc 20(14), 2377 (2000).

    Google Scholar 

  14. A.M. Sofronia, R. Baies, E.M. Anghel, C.A. Marinescu, and S. Tanasescu, J. Mater. Sci. Eng. C 43, 153 (2014).

    Google Scholar 

  15. T. Goton and K. Sasaki, Ceram. Inter. 40, 10777 (2014).

    Google Scholar 

  16. S. Schiegl, P. Goldberg, H.U. Pfretzschne, and N.J. Conard, Geoarchaeology 18, 541 (2003).

    Google Scholar 

  17. K.E. Squires, T.J.U. Thompson, M. Islam, and A. Chamberlain, J. Archaeol. Sci 38(9), 2399 (2011).

    Google Scholar 

  18. M.M. Beasley, E.J. Bartelink, L. Taylor, and R.M. Miller, J. Archaeol. Sci 46, 16 (2014).

    Google Scholar 

  19. A. Shemesh, Geochim. Cosmochim. Acta 54, 2433 (1990).

    Google Scholar 

  20. K.D. Rogers and P. Daniels, Biomater. 23, 2577 (2002).

    Google Scholar 

  21. S. Beckett, K.D. Rogers, and J.G. Clement, J. Forensic. Sci. 56, 571 (2011).

    Google Scholar 

  22. G. Piga, M. Guirguis, P. Bartoloni, A. Malgosa, and S. Enzo, Int. J. Osteoarchaeol 18, 1 (2008).

    Google Scholar 

  23. D. Farlay, G. Panczer, C. Rey, P. Delmas, and G. Boivin, J. Bone Miner. Metab. 28, 433 (2010).

    Google Scholar 

  24. M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, and H. Figueiredo, Ceram. Int. 36, 2383 (2008).

    Google Scholar 

  25. X.Y. Wang, Y. Zuo, D. Huang, X.D. Hou, and Y.B. Li, Biomed. Environ. Sci. 23, 473 (2010).

    Google Scholar 

  26. G. Dal Sasso, M. Lebon, I. Angelini, L. Maritan, and G. Artioli, Palaeogeogr. Palaeoclimatol. Palaeoecol 463, 168 (2016).

    Google Scholar 

  27. A. Person, H. Bocherens, A. Mariotti, and M. Renard, Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 135 (1996).

    Google Scholar 

  28. T.J.U. Thompson, M. Gauthier, and M. Islam, J. Archaeol. Sci. 36, 910 (2009).

    Google Scholar 

  29. S. Weiner and O. Bar-Yosef, J. Archaeol. Sci. 17, 187 (1990).

    Google Scholar 

  30. N. Vargas-Becerril, J. Reyes-Gasga, and R. García-García, Mater. Sci. Eng. C 97, 644 (2019).

    Google Scholar 

  31. T.J.U. Thompson, M. Islam, and M. Bonniere, J. Archaeol. Sci. 40, 416 (2013).

    Google Scholar 

  32. S.E. Etok, E. Valsami-Jones, T.J. Wess, J.C. Hiller, C.A. Maxwell, and K.D. Rogers, J. Mater. Sci 42, 9807 (2007).

    Google Scholar 

  33. T.J.U. Thompson, The Analysis of Burned Human Remains, ed. C. Schmidt and S. Symes (Elsevier LTd, United States, 2015), p. 323

  34. J.D. Fredericks, P. Bennett, A. Williams, and K.D. Rogers, Forensic Sci. Int. Genet 6, 375 (2012).

    Google Scholar 

  35. M. Bohnert, T. Rost, and S. Pollak, Forensic Sci. Inter. 95, 11 (1998).

    Google Scholar 

  36. T.J.U. Thompson, J. Forensic. Sci. 50(5), 1008 (2005).

    Google Scholar 

  37. K. Haberko, M.M. Bucko, J. Brzezinska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zarebski, J. Eur. Ceram. Soc. 26, 537 (2006).

    Google Scholar 

  38. C.Y. Ooi, M. Hamdi, and S. Ramesh, Ceram. Inter. 33, 1171 (2007).

    Google Scholar 

  39. W.P.S.L. Wijesinghe , M.M.M.G.P.G. Mantilaka , E.V.A. Premalal , H.M.T.U. Herath , S.Mahalingam , M. Edirisinghe , R.P.V.J. Rajapakse and R.M.G. Rajapakse , J. Mater. Sci. Eng. C, 42, 83 (2014)

  40. V.P. Orlovskii, V.S. Komlev, and S.M. Barinov, Inorg. Mater. 38, 973 (2002).

    Google Scholar 

  41. Nasser A.M. Barakat, K.A. Khalil , Faheem A. Sheikh , A.M. Omran , Babita Gaihre , Soeb M. Khil and Hak Yong Kim, J. Mater. Sci. Eng. C. (2008) https://doi.org/10.1016/j.msec.2008.03.003

  42. K.P. Sanosh, M. Chu, A. Balakrishnan, T.N. Kim, and S.B. Cho, Bull. Mater. Sci. https://doi.org/10.1007/s12034-009-0069-x (2009).

    Article  Google Scholar 

  43. S. Joschek, B. Nies, R. Krotz, and A. Gofpferich, Biomater. 21, 1645 (2000).

    Google Scholar 

  44. M. Younesi, S. Javadpour, and M.E. Bahrololoom, J. Mater. Eng. Perform. 20(8), 1484 (2011).

    Google Scholar 

  45. W.L. Suchanek, P. Shuk, K. Byrappa, R.E. Riman, K.S. TenHuisen, and V.F. Janas, Biomater. 23, 699 (2002).

    Google Scholar 

  46. J.P. Lafon, E. Champion, and D. Bernache-Assollant, J. Eur. Ceram. Soc. 28, 139 (2008).

    Google Scholar 

  47. S. Dimović, I. Smičiklas, I. Plećaš, D. Antonović, and M. Mitrić, J. Hazard. Mater. 164, 279 (2009).

    Google Scholar 

  48. M. Markovic, B.O. Fowler, and M.S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553 (2004).

    Google Scholar 

  49. Q. Liu , J.P. Matinlinna, Z. Chen, C. Ning, G. Ni, H. Pane and B. W. Darvel, Ceram. Inter (2015) https://doi.org/10.1016/j.ceramint.2014.11.062

  50. S. Saber-Samandari, K. Alamara, S. Saber-Samandari, and K.A. Gross, Acta Biomater. 9, 9538 (2013).

    Google Scholar 

  51. M.E. Fleet and Xi. Liu, Biomater. 28, 916 (2007).

    Google Scholar 

  52. L.F. Lozano, M.A. Pena-Rico, A. Heredia, J. Octolan-Flores, A. Gomez Cortes, R. Velazquez, I.A. Belio, and L. Bucio, J. Mater. Sci. 38, 4777 (2003).

    Google Scholar 

  53. K.A. Gross, L. Berzina, R. Cimdins, and V. Gross, Ceram. Int. 25, 231 (1999).

    Google Scholar 

  54. J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. de Groot, J. Mater. Sci.: Mater. Med. 4, 83 (1993).

    Google Scholar 

  55. M.G. Kutty and S. Ramesh, Ceram. Int. 26, 221 (2000).

    Google Scholar 

  56. A. Niakana, S. Ramesha, P. Ganesana, C.Y. Tana, J. Purbolaksonoa, Hari Chandranb, S. Rameshc and W.D. Teng, Ceram. Inter (2015) https://doi.org/10.1016/j.ceramint.2014.10.138

  57. P.E. Wang and T.K. Chaki, J. Mater. Sci.: Mater. Med. 4, 150 (1993).

    Google Scholar 

  58. T. Wang, A. Dorner-Reisel and E. Muller, J. Eur. Ceram. Soc (2004) https://doi.org/10.1016/S0955-2219(03)00248-6

  59. A.J. Ruys, M. Wei, C.C. Sorrell, M.R. Dickson, A. Brandwood, and B.K. Milthorpe, Biomater. 16, 409 (1995).

    Google Scholar 

  60. K. Tonsuaadu, K.A. Gross, L. Pluduma, and M. Veiderma, J. Therm. Anal. Calorim. 110, 647 (2012).

    Google Scholar 

  61. S.V. Dorozhkin, J. Funct. Biomater. 1, 22 (2010).

    Google Scholar 

  62. C.J. Liao, F.H. Lin, K.S. Chen, and J.S. Sun, Biomater. 20, 1807 (1999).

    Google Scholar 

  63. N. Vargas-Becerril, R. García-García, and J. Reyes-Gasga, Mater. Sci. Appl. 9, 637 (2018).

    Google Scholar 

  64. H.E.C. Koon, R.A. Nicholson, and M.J. Collins, J. Archaeol. Sci. 30, 1393 (2003).

    Google Scholar 

  65. E. Pucéat, B. Reynard, and C. Lécuyer, Chem. Geol. 205, 83 (2004).

    Google Scholar 

  66. J.C. Hiller, T.J.U. Thompson, M.P. Evison, A.T. Chamberlain, and T.J. Wess, Biomater. 24, 5091 (2003).

    Google Scholar 

  67. R.Z. Le Geros, Calcium Phosphates in Oral Biology and Medicine (Karger, San Francisco, 1991), p 201.

    Google Scholar 

  68. P. Bosch, I. Alemán, C. Moreno-Castilla, and M. Botella, J. Archaeol. Sci. 38, 2561 (2011).

    Google Scholar 

  69. K. Muralithran and S. Ramesh, Ceram. Int. 26, 221 (2000).

    Google Scholar 

Download references

Acknowledgements

The Ministry of Higher Education and Scientific Research of Tunisia supported this study financially. The authors thank Mrs. Hayet Werda for proof-reading, correcting and improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Ayadi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, A., Bouaziz, J. Preparation and Microstructural Characterization of Natural Hydroxyapatite Extracted from Animal Bones. JOM 74, 3119–3132 (2022). https://doi.org/10.1007/s11837-022-05364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05364-3

Navigation