Skip to main content
Log in

Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural fiber-reinforced polymer composites are desirable structural materials due to their biodegradability. Moreover, natural fiber sources are abundant and the production of natural fiber-reinforced polymer composites is moderately energy-consuming, leaving almost no carbon footprint behind. Among natural fibers, bamboo has attracted much interest as a promising reinforcement for different polymer matrices because of its favorable mechanical properties. Herein, a brief review of the different types of natural fibers, i.e., plant (especially bamboo fiber), animal, and mineral fibers, is provided, followed by an in-depth review of the case studies in the last decade that have focused on the mechanical properties of bamboo fiber-reinforced polymer composites. Among polymer matrices discussed are thermoplastics such as poly(lactic acid) and polypropylene and thermosetting resins such as polyester, epoxy, and phenolic. Finally, special attention is given to the surface modification of bamboo fibers, which has repeatedly been demonstrated to improve the mechanical properties of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ABF:

Alkali-treated bamboo fiber

AESOD:

Acrylated epoxidized soybean oil-1,6-diisocyanatohexane

AESODBF:

Acrylated epoxidized soybean oil-1,6-diisocyanatohexane-treated bamboo fiber

ASBF:

Alkali and silane-treated bamboo fiber

ATBF:

Alkali- and titane-treated bamboo fiber

BD:

Bambusa Pervariabilis McClure 9 Dendrocalamopsis Daii

BF:

Bamboo fiber

BFRPC:

Bamboo fiber-reinforced polymer composite

CA:

Coupling agent

CRN:

Carbonized ramosissima nanoparticles

DABF:

Dopamine-treated bamboo fiber

DF:

Dendrocalamus Farinosus

DL:

Dendrocalamus Latiflorus

EL:

Elongation at break

EP:

Epoxy

EVC:

1,2-Epoxy-4-vinylcyclohexane

FM:

Flexural modulus

FRPC:

Fiber-reinforced polymer composite

GO:

Graphene oxide

GOABF:

Graphene oxide-coated alkali-treated bamboo fiber

HGM:

Treated hollow glass microspheres

IEMBF:

Isocyanatoethyl methacrylate-treated bamboo fiber

IS:

Impact strength

MAPP:

Maleated polypropylene

NA:

Neosinocalamus Affinis

NC:

Nanoclay

NF:

Natural fiber

NFRPBC:

Natural fiber-reinforced polymer biocomposite

PES:

Polyester

PHR:

Phenolic resin

PH:

Phyllostachys Heterocycla

PLA:

Poly(lactic acid)

PLA-g-BF:

Poly(lactic acid)-grafted bamboo fiber

PP:

Polypropylene

RESBF:

Rare earth solution-treated bamboo fiber

SR:

Starch resin

UFS:

Ultimate flexural strength

UPES:

Unsaturated polyester

UTS:

Ultimate tensile strength

VTMS:

Vinyltrimethoxysilane

YM:

Young’s modulus

References

  1. Mousavi SR, Estaji S, Raouf Javidi M et al (2021) Toughening of epoxy resin systems using core–shell rubber particles: a literature review. J Mater Sci 56:18345. https://doi.org/10.1007/s10853-021-06329-8

    Article  CAS  Google Scholar 

  2. Estaji S, Paydayesh A, Mousavi SR, Khonakdar HA, Abiyati MM (2021) Polycarbonate/poly (methyl methacrylate)/silica aerogel blend composites for advanced transparent thermal insulations: mechanical, thermal, and optical studies. Polym Compos 42:5323

    CAS  Google Scholar 

  3. Paydayesh A, Mousavi SR, Estaji S, Khonakdar HA, Nozarinya MA (2021) Functionalized graphene nanoplatelets/poly (lactic acid)/chitosan nanocomposites: mechanical, biodegradability, and electrical conductivity properties. Polym Compos 43:411

    Google Scholar 

  4. Mousavi SR, Faraj Nejad S, Jafari M, Paydayesh A (2021) Polypropylene/ethylene propylene diene monomer/cellulose nanocrystal ternary blend nanocomposites: effects of different parameters on mechanical, rheological, and thermal properties. Polym Compos 42:4187

  5. Razavi M, Sadeghi N, Jafari SH, Khonakdar HA, Wagenknecht U, Leuteritz A (2022) Thermo-rheological probe of microstructural evolution and degradation pathway in the flame-retarded PP/EVA/NOR/clay nanocomposites. Rheologica Acta 61:25

    CAS  Google Scholar 

  6. Khosravi M, Seyfi J, Saeidi A, Khonakdar HA (2020) Spin-coated polyvinylidene fluoride/graphene nanocomposite thin films with improved β-phase content and electrical conductivity. J Mater Sci 55:6696. https://doi.org/10.1007/s10853-020-04435-7

    Article  CAS  Google Scholar 

  7. Shi J, Yao R, Kong Z, Ni F, Zheng J (2021) Strength analysis on hybrid welding interface of polymer and short carbon fiber reinforced composite. J Mater Sci , 1. https://doi.org/10.1007/s10853-021-06207-3

  8. Jayavani S, Deka H, Varghese T, Nayak S (2016) Recent development and future trends in coir fiber-reinforced green polymer composites: review and evaluation. Polym Compos 11:3296

    Google Scholar 

  9. Yao X, Raine TP, Liu M, Zakaria M, Kinloch IA, Bissett MA (2021) Effect of graphene nanoplatelets on the mechanical and gas barrier properties of woven carbon fibre/epoxy composites. J Mate Sci, 1. https://doi.org/10.1007/s10853-021-06467-z

  10. Kazemi M, Shanmugam L, Lu D, Wang X, Wang B, Yang J (2019) Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Compos A Appl Sci Manufact 125:105523.

  11. Ghanbari A, Sadat Jalili N, Haddadi SA, Arjmand M, Nofar M (2020) Mechanical properties of extruded glass fiber reinforced thermoplastic polyolefin composites. Polym Compos 41:3748

    CAS  Google Scholar 

  12. Gong S, Zhu ZH, Arjmand M, Sundararaj U, Yeow JT, Zheng W (2018) Effect of carbon nanotubes on electromagnetic interference shielding of carbon fiber reinforced polymer composites. Polym Compos 39:E655

    CAS  Google Scholar 

  13. Long H, Wu Z, Dong Q et al (2019) Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing. Polym Eng Sci 59:E247

    CAS  Google Scholar 

  14. Wang B, Li P, Xu Y-J, et al (2020) Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism. Compos B Eng 194:108038.

  15. Kamiński K, Jarosz M, Grudzień J et al (2020) Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose 27:5353

    Google Scholar 

  16. Bahrami M, Enciso B, Gaifami CM, Abenojar J, Martinez MA (2021) Characterization of hybrid biocomposite Poly-Butyl-Succinate/Carbon fibers/Flax fibers. Compos B Eng, 109033.

  17. Mazzanti V, de Luna MS, Pariante R, Mollica F, Filippone G (2020) Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Compos A Appl Sci Manufact 137:105990.

  18. Khalili P, Tshai K, Kong I (2017) Natural fiber reinforced expandable graphite filled composites: evaluation of the flame retardancy, thermal and mechanical performances. Compos A Appl Sci Manuf 100:194

    CAS  Google Scholar 

  19. Mahmud S, Hasan KF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci, 1. https://doi.org/10.1007/s10853-021-05774-9

  20. Nawafleh N, Elibol FKE, Aljaghtham M et al (2020) Static and dynamic mechanical performance of short Kevlar fiber reinforced composites fabricated via direct ink writing. J Mater Sci 55:11284. https://doi.org/10.1007/s10853-020-04826-w

    Article  CAS  Google Scholar 

  21. Kenned JJ, Sankaranarayanasamy K, Binoj J, Chelliah SK (2020) Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos Sci Technol 185:107890.

  22. Mohan T, Kanny K (2019) Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos B Eng 169:118

    CAS  Google Scholar 

  23. Wang X, Chang L, Shi X, Wang L (2019) Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials 12:1386

    CAS  Google Scholar 

  24. Rafiquzzaman M, Islam M, Rahman H, Talukdar S, Hasan N (2016) Mechanical property evaluation of glass–jute fiber reinforced polymer composites. Polym Adv Technol 27:1308

    CAS  Google Scholar 

  25. Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R (2016) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36

    Google Scholar 

  26. Akindoyo JO, Beg MD, Ghazali S, Heim HP, Feldmann M, Mariatti M (2019) Oxidative induction and performance of oil palm fiber reinforced polypropylene composites–effects of coupling agent and UV stabilizer. Compos A Appl Sci Manufact 125:105577.

  27. Jena H, Pradhan AK, Pandit MK (2018) Study of solid particle erosion wear behavior of bamboo fiber reinforced polymer composite with cenosphere filler. Adv Polym Technol 37:761

    CAS  Google Scholar 

  28. Chang C-W, Chang F-C (2021) Fracture characteristics and energy dissipation of textile bamboo fiber reinforced polymer. Polymers 13:634

    CAS  Google Scholar 

  29. Gupta M, Singh R (2019) PLA-coated sisal fibre-reinforced polyester composite: water absorption, static and dynamic mechanical properties. J Compos Mater 53:65

    CAS  Google Scholar 

  30. Li Q, Li Y, Zhang Z, Zhou L (2020) Multi-layer interfacial fatigue and interlaminar fracture behaviors for sisal fiber reinforced composites with nano-and macro-scale analysis. Compos A Appl Sci Manufact 135:105911.

  31. Saba N, Alothman OY, Almutairi Z, Jawaid M (2019) Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties. Constr Build Mater 201:138

    CAS  Google Scholar 

  32. Krishna KV, Kanny K (2016) The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos B Eng 104:111

    CAS  Google Scholar 

  33. Mohamed S, Zainudin E, Sapuan S, Azaman M, Arifin A (2020) Energy behavior assessment of rice husk fibres reinforced polymer composite. J Market Res 9:383

    CAS  Google Scholar 

  34. Chen RS, Ab Ghani MH, Salleh MN, Ahmad S, Tarawneh MaA (2015) Mechanical, water absorption, and morphology of recycled polymer blend rice husk flour biocomposites. J Appl Polymer Sci, p 132.

  35. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos B Eng 176:107305.

  36. da Luz FS, Ramos FJHTV, Nascimento LFC, da Silva Figueiredo AB-H, Monteiro SN (2018) Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. J Market Res 7:528

    CAS  Google Scholar 

  37. Cabrera LF, de Lima RMC, Santana CDC, Rodríguez (2020) Influence of coupling agent in mechanical, physical and thermal properties of polypropylene/bamboo fiber composites: under natural outdoor aging. Polymers 12:929

    Google Scholar 

  38. Cabrera LF, de Lima CD, Chamorro Rodríguez JH, Hernandez M (2021) Use of organic acids in bamboo fiber-reinforced polypropylene composites: mechanical properties and interfacial morphology. Polymers 13:2007

    Google Scholar 

  39. Zuo Y, Chen K, Li P, He X, Li W, Wu Y (2020) Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int J Biol Macromol 157:177

    CAS  Google Scholar 

  40. Muhammad A, Rahman MR, Hamdan S, Sanaullah K (2019) Recent developments in bamboo fiber-based composites: a review. Polym Bull 76:2655

    CAS  Google Scholar 

  41. Khan Z, Yousif B, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos B Eng 116:186

    CAS  Google Scholar 

  42. Long H, Wu Z, Dong Q et al (2019) Effect of polyethylene glycol on mechanical properties of bamboo fiber-reinforced polylactic acid composites. J Appl Polym Sci 136:47709

    Google Scholar 

  43. Wang Q, Zhang Y, Liang W, Wang J, Chen Y (2020) Improved mechanical properties of the graphene oxide modified bamboo-fiber-reinforced polypropylene composites. Polym Compos 41:3615

    CAS  Google Scholar 

  44. Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19:1449

    CAS  Google Scholar 

  45. Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC, Ekundayo G (2015) The use of polypropylene in bamboo fibre composites and their mechanical properties–A review. J Reinf Plast Compos 34:1347

    CAS  Google Scholar 

  46. Nurul Fazita M, Jayaraman K, Bhattacharyya D et al (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review. Materials 9:435

    Google Scholar 

  47. Khalil HA, Bhat I, Jawaid M, Zaidon A, Hermawan D, Hadi Y (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353

    Google Scholar 

  48. Rajeshkumar G, Seshadri SA, Devnani G et al (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–a comprehensive review. J Clean Prod, p 127483.

  49. Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng Sci Technol Int J 19:717

    Google Scholar 

  50. Serra-Parareda F, Tarrés Q, Espinach FX, Vilaseca F, Mutjé P, Delgado-Aguilar M (2020) Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. Int J Biol Macromolecules.

  51. C-c Fang Y, Zhang S-y, Liao Y-c, Y-y Li P, Wang (2020) Influence of structural design on mechanical and thermal properties of jute reinforced polylactic acid (PLA) laminated composites. Cellulose 27:9397

    Google Scholar 

  52. Tian W, Yang K, Wu S et al (2021) Impact of hydration on the mechanical properties and damage mechanisms of natural silk fibre reinforced composites. Compos A Appl Sci Manufact 147:106458.

  53. Preda N, Costas A, Lilli M et al (2021) Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites. Compos A Appl Sci Manufactturing, p 106488.

  54. Sinha AK, Bhattacharya S, Narang HK (2021) Abaca fibre reinforced polymer composites: a review. J Mater Sci 56:4569

    Google Scholar 

  55. Nguong C, Lee S, Sujan D (2013) A review on natural fibre reinforced polymer composites. Int J Mater Metal Eng 7:52. https://doi.org/10.5281/zenodo.1332600

    Article  Google Scholar 

  56. Hyvärinen M, Kärki T (2015) The Effects of the Substitution of Wood Fiber with Agro-based Fiber (Barley Straw) on the Properties of Natural Fiber/Polypropylene Composites. MATEC web of conferences EDP Sciences

  57. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6:5171

    Google Scholar 

  58. Rojas JJP, Valencia BAR, Osorio FJB, Ramirez D (2021) The role of fiber-matrix compatibility in vacuum processed natural fiber/epoxy biocomposites. Cellulose, p 1.

  59. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582

    Google Scholar 

  60. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829

    CAS  Google Scholar 

  61. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydrate Polymers 71:343

    CAS  Google Scholar 

  62. Fortea-Verdejo M, Bumbaris E, Burgstaller C, Bismarck A, Lee K-Y (2017) Plant fibre-reinforced polymers: where do we stand in terms of tensile properties? Int Mater Rev 62:441

    CAS  Google Scholar 

  63. Campilho RD (2015) Natural fiber composites. CRC Press, Boca Raton

    Google Scholar 

  64. Manivannan J, Rajesh S, Mayandi K et al. (2020) Animal fiber characterization and fiber loading effect on mechanical behaviors of sheep wool fiber reinforced polyester composites. J Natural Fibers, p 1.

  65. Emmett EA (2021) Asbestos in high-risk communities: public health implications. Int J Environ Res Public Health 18:1579

    Google Scholar 

  66. Nuyts V, Nawrot T, Nemery B, Nackaerts K (2018) Hotspots of malignant pleural mesothelioma in Western Europe. Transl Lung Cancer Res 7:516

    Google Scholar 

  67. Carlin DJ, Larson TC, Pfau JC et al (2015) Current research and opportunities to address environmental asbestos exposures. Environ Health Perspect 123:A194

    CAS  Google Scholar 

  68. Xiong R, Fang J, Xu A, Guan B, Liu Z (2015) Laboratory investigation on the brucite fiber reinforced asphalt binder and asphalt concrete. Constr Build Mater 83:44

    Google Scholar 

  69. Chan JX, Wong JF, Hassan A, Mohamad Z, Othman N (2020) Mechanical properties of wollastonite reinforced thermoplastic composites: a review. Polym Compos 41:395

    CAS  Google Scholar 

  70. Park S-H (2018) Types and health hazards of fibrous materials used as asbestos substitutes. Saf Health Work 9:360

    Google Scholar 

  71. Bismarck A, Mishra S, Lampke T (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton

  72. Rocky BP, Thompson AJ (2018) Production of natural bamboo fibers-1: experimental approaches to different processes and analyses. J Textile Instit 109:1381

    CAS  Google Scholar 

  73. Huang J-K, Young W-B (2019) The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Compos B Eng 166:272

    CAS  Google Scholar 

  74. Chaowana P (2013) Bamboo: an alternative raw material for wood and wood-based composites. J Mater Sci Res 2:90

    CAS  Google Scholar 

  75. Nayak L, Mishra SP (2016) Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fashion Textiles 3:1

    Google Scholar 

  76. Ray AK, Das SK, Mondal S, Ramachandrarao P (2004) Microstructural characterization of bamboo. J Mater Sci 39:1055. https://doi.org/10.1023/B:JMSC.0000012943.27090.8f

    Article  CAS  Google Scholar 

  77. Ray AK, Mondal S, Das SK, Ramachandrarao P (2005) Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. J Mater Sci 40:5249. https://doi.org/10.1007/s10853-005-4419-9

    Article  CAS  Google Scholar 

  78. Prakash C (2020) Handbook of natural fibres. Elsevier, Amsterdam

    Google Scholar 

  79. Wang D, Bai T, Cheng W et al (2019) Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding. Polymers 11:2107

    CAS  Google Scholar 

  80. Reale Batista MD, Drzal LT (2021) Surface modification of bamboo fiber with sodium hydroxide and graphene oxide in epoxy composites. Polym Compos 42:1135

    CAS  Google Scholar 

  81. N Karabulut, M Aktaş, HE Balcıoğlu (2018) Surface modification effects on the mechanical properties of woven jute fabric reinforced laminated composites. J Natural Fibers 16:629

    Google Scholar 

  82. Singh AS, Halder S, Wang J (2017) Extraction of bamboo micron fibers by optimized mechano-chemical process using a central composite design and their surface modification. Mater Chem Phys 199:23

    CAS  Google Scholar 

  83. Phong NT, Fujii T, Chuong B, Okubo K (2012) Study on how to effectively extract bamboo fibers from raw bamboo and wastewater treatment. J Mater Sci Res 1:144

    CAS  Google Scholar 

  84. Divya D, Indran S, Bharath KN (2021) Bamboo fiber composites. Springer, Heidelberg

    Google Scholar 

  85. Huang Y, Meng F, Liu R, Yu Y, Yu W (2019) Morphology and supramolecular structure characterization of cellulose isolated from heat-treated moso bamboo. Cellulose 26:7067

    CAS  Google Scholar 

  86. Tang Q, Wang Y, Ren Y, Zhang W, Guo W (2019) A novel strategy for the extraction and preparation of bamboo fiber-reinforced polypropylene composites. Polym Compos 40:2178

    CAS  Google Scholar 

  87. Kim H, Okubo K, Fujii T, Takemura K (2013) Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. J Adhes Sci Technol 27:1348

    CAS  Google Scholar 

  88. Adel Salih A, Zulkifli R, Azhari CH (2020) Tensile properties and microstructure of single-cellulosic bamboo fiber strips after alkali treatment. Fibers 8:26

    Google Scholar 

  89. Chen H, Yu Y, Zhong T et al (2017) Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 24:333

    CAS  Google Scholar 

  90. Biswas S, Shahinur S, Hasan M, Ahsan Q (2015) Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Proc Eng 105:933

    CAS  Google Scholar 

  91. Osorio L, Trujillo E, Van Vuure AW, Verpoest I (2011) Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. J Reinf Plast Compos 30:396

    CAS  Google Scholar 

  92. Sukmawan R, Takagi H, Nakagaito AN (2016) Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos B Eng 84:9

    CAS  Google Scholar 

  93. Tran D, Nguyen D, Ha Thuc C, Dang T (2013) Effect of coupling agents on the properties of bamboo fiber-reinforced unsaturated polyester resin composites. Compos Interfaces 20:343

    CAS  Google Scholar 

  94. Manalo AC, Wani E, Zukarnain NA, Karunasena W, Lau K-t (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Compos B Eng 80:73

    CAS  Google Scholar 

  95. Zakikhani P, Zahari R, Sultan M, Majid D (2014) Extraction and preparation of bamboo fibre-reinforced composites. Mater Des 63:820

    CAS  Google Scholar 

  96. Sathishkumar G, Ibrahim M, Mohamed Akheel M et al (2020) Synthesis and mechanical properties of natural fiber reinforced epoxy/polyester/polypropylene composites: a review. J Natural Fibers, p 1.

  97. Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43:1419

    Google Scholar 

  98. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52:259

    CAS  Google Scholar 

  99. Nafissa M, Lamia B, Jawaid M, Asim M (2021) Eco-friendly adhesives for wood and natural fiber composites. Springer, Heidelberg

    Google Scholar 

  100. Besi MKS (2013) A review on mechanical properties of bamboo fiber reinforced polymer composite. Aust J Basic Appl Sci 7:247

    Google Scholar 

  101. Jiang L, Li Y, Xiong C, Su S, Ding H (2017) Preparation and properties of bamboo fiber/nano-hydroxyapatite/poly (lactic-co-glycolic) composite scaffold for bone tissue engineering. ACS Appl Mater Interfaces 9:4890

    CAS  Google Scholar 

  102. Zhang K, Wang F, Liang W, Wang Z, Duan Z, Yang B (2018) Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers 10:608

    Google Scholar 

  103. Wang F, Shao J (2014) Modified Weibull distribution for analyzing the tensile strength of bamboo fibers. Polymers 6:3005

    CAS  Google Scholar 

  104. Masubuchi Y, Terada M, Yamanaka A, Yamamoto T, Ishikawa T (2016) Distribution function of fiber length in thermoplastic composites. Compos Sci Technol 134:43

    CAS  Google Scholar 

  105. Heim D, Hartmann M, Neumayer J et al (2013) Novel method for determination of critical fiber length in short fiber carbon/carbon composites by double lap joint. Compos B Eng 54:365

    CAS  Google Scholar 

  106. Wang G, Yu D, Kelkar AD, Zhang L (2017) Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 75:73

    CAS  Google Scholar 

  107. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11:1667

    CAS  Google Scholar 

  108. John R, Lin R, Jayaraman K, Bhattacharyya D (2021) Effects of machining parameters on surface quality of composites reinforced with natural fibers. Mater Manuf Processes 36:73

    CAS  Google Scholar 

  109. Z Qiu, H Fan (2020) Nonlinear modeling of bamboo fiber reinforced composite materials. Compos Struct 238:111976.

  110. Fang L, Lu X, Zeng J, Chen Y, Tang Q (2020) Investigation of the flame-retardant and mechanical properties of bamboo fiber-reinforced polypropylene composites with melamine pyrophosphate and aluminum hypophosphite addition. Materials 13:479

    CAS  Google Scholar 

  111. M Jawaid, SM Rangappa, S Siengchin Bamboo fiber composites. Springer

  112. Latif SS, Nahar S, Hasan M (2015) Fabrication and electrical characterization of bamboo fiber-reinforced polypropylene composite. J Reinf Plast Compos 34:187

    Google Scholar 

  113. Wang F, Zhou S, Li L, Zhang X (2018) Changes in the morphological–mechanical properties and thermal stability of bamboo fibers during the processing of alkaline treatment. Polym Compos 39:E1421

    CAS  Google Scholar 

  114. Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly (lactic-co-glycolic) composite. Ind Eng Chem Res 54:12017

    CAS  Google Scholar 

  115. Wang F, Lu M, Zhou S, Lu Z, Ran S (2019) Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers. Molecules 24:2682

    CAS  Google Scholar 

  116. I Widiastuti, M Solikhun, DN Cahyo, YR Pratiwi, H Juwantono (2018) AIP conference proceedings. AIP Publishing LLC,Melville

  117. Bai T, Wang D, Yan J et al (2021) Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites. Compos Sci Technol 213:108951.

  118. Chand N, Fahim M (2020) Tribology of natural fiber polymer composites. Woodhead publishing, Sawston

  119. Fuentes C, Brughmans G, Tran L, Dupont-Gillain C, Verpoest I, Van Vuure AW (2015) Mechanical behaviour and practical adhesion at a bamboo composite interface: physical adhesion and mechanical interlocking. Compos Sci Technol 109:40

    CAS  Google Scholar 

  120. Zhang Y, Yan R, Ngo T-d et al (2019) Ozone oxidized lignin-based polyurethane with improved properties. Eur Polymer J 117:114

    CAS  Google Scholar 

  121. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B Eng 101:31

    CAS  Google Scholar 

  122. Kim JK, Pal K (2010) Recent advances in the processing of wood-plastic composites. Springer, Heidelberg

    Google Scholar 

  123. Sánchez ML, Patiño W, Cárdenas J (2020) Physical-mechanical properties of bamboo fibers-reinforced biocomposites: influence of surface treatment of fibers. J Build Eng 28:101058. https://doi.org/10.1016/j.jobe.2019.101058

    Article  Google Scholar 

  124. Ferreira DP, Cruz J, Fangueiro R (2019) In: Koronis G, Silva A (eds) Green composites for automotive applications. Woodhead Publishing, Sawston

  125. Fiore V, Sanfilippo C, Calabrese L (2019) Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment. Polym Testing 80:106100. https://doi.org/10.1016/j.polymertesting.2019.106100

    Article  CAS  Google Scholar 

  126. Zhuo G, Zhang X, Jin X, Wang M, Yang X, Li S (2020) Effect of different enzymatic treatment on mechanical, water absorption and thermal properties of bamboo fibers reinforced poly(hydroxybutyrate-co-valerate) biocomposites. J Polym Environ 28:2377. https://doi.org/10.1007/s10924-020-01781-0

    Article  CAS  Google Scholar 

  127. Wang D, Bai T, Cheng W et al (2019) Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding. Polymers 11. https://doi.org/10.3390/polym11122107

  128. Zhang X, Wang F, Keer LM (2015) Influence of surface modification on the microstructure and thermo-mechanical properties of bamboo fibers. Materials 8. https://doi.org/10.3390/ma8105327

  129. Fazeli M, Florez JP, Simão RA (2019) Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Compos B Eng 163:207. https://doi.org/10.1016/j.compositesb.2018.11.048

    Article  CAS  Google Scholar 

  130. Ebadi-Dehaghani H, Khonakdar H, Barikani M, Jafari S, Wagenknecht U, Heinrich G (2016) On localization of clay nanoparticles in polypropylene/poly (lactic acid) blend nanocomposites: Correlation with mechanical properties.J Macromolecular Sci B 55:344

    CAS  Google Scholar 

  131. Yavarpanah S, Seyfi J, Davachi SM, Hejazi I, Khonakdar HA (2019) Evaluating the effect of hydroxyapatite nanoparticles on morphology, thermal stability and dynamic mechanical properties of multicomponent blend systems based on polylactic acid/Starch/Polycaprolactone. J Vinyl Add Tech 25:E83

    CAS  Google Scholar 

  132. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27:52

    CAS  Google Scholar 

  133. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17

    CAS  Google Scholar 

  134. Siakeng R, Jawaid M, Ariffin H, Sapuan S, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446

    CAS  Google Scholar 

  135. Kobayashi S, Takada K, Song D-Y (2012) Effect of molding condition on the mechanical properties of bamboo-rayon continuous fiber/poly (lactic acid) composites. Adv Compos Mater 21:79

    CAS  Google Scholar 

  136. Pozo Morales A, Güemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo–polylactic acid (PLA) composite material for structural applications. Materials 10:1286

    Google Scholar 

  137. Lin J, Yang Z, Hu X, Hong G, Zhang S, Song W (2018) The effect of alkali treatment on properties of dopamine modification of bamboo fiber/polylactic acid composites. Polymers 10:403

    Google Scholar 

  138. Hu G, Cai S, Zhou Y, Zhang N, Ren J (2018) Enhanced mechanical and thermal properties of poly (lactic acid)/bamboo fiber composites via surface modification. J Reinf Plast Compos 37:841

    CAS  Google Scholar 

  139. Li W, He X, Zuo Y, Wang S, Wu Y (2019) Study on the compatible interface of bamboo fiber/polylactic acid composites by in-situ solid phase grafting. Int J Biol Macromol 141:325

    CAS  Google Scholar 

  140. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26:443. https://doi.org/10.1016/S0079-6700(00)00046-0

    Article  CAS  Google Scholar 

  141. Fajardo Cabrera LD, de Lima RM, Santana CDC, Rodríguez (2020) Influence of coupling agent in mechanical, physical and thermal properties of polypropylene/bamboo fiber composites: under natural outdoor aging. Polymers 12. https://doi.org/10.3390/polym12040929

  142. Nahar S, Khan RA, Dey K, Sarker B, Das AK, Ghoshal S (2012) Comparative studies of mechanical and interfacial properties between jute and bamboo fiber-reinforced polypropylene-based composites. J Thermoplast Compos Mater 25:15

    Google Scholar 

  143. Ying S, Wang C, Lin Q (2013) Effects of heat treatment on the properties of bamboo fiber/polypropylene composites. Fibers Polymers 14:1894

    CAS  Google Scholar 

  144. Wang C, Ying S (2014) A novel strategy for the preparation of bamboo fiber reinforced polypropylene composites. Fibers Polymers 15:117

    CAS  Google Scholar 

  145. Chunhong W, Shengkai L, Zhanglong Y (2016) Mechanical, hygrothermal ageing and moisture absorption properties of bamboo fibers reinforced with polypropylene composites. J Reinf Plast Compos 35:1062

    Google Scholar 

  146. Di Bella G, Calabrese L, Borsellino C (2012) Mechanical characterisation of a glass/polyester sandwich structure for marine applications. Mater Des 42:486. https://doi.org/10.1016/j.matdes.2012.06.023

    Article  CAS  Google Scholar 

  147. Gao Y, Romero P, Zhang H, Huang M, Lai F (2019) Unsaturated polyester resin concrete: a review. Constr Build Mater 228:116709. https://doi.org/10.1016/j.conbuildmat.2019.116709

    Article  CAS  Google Scholar 

  148. Liu W, Chen T, Wen X, Qiu R, Zhang X (2014) Enhanced mechanical properties and water resistance of bamboo fiber–unsaturated polyester composites coupled by isocyanatoethyl methacrylate. Wood Sci Technol 48:1241

    CAS  Google Scholar 

  149. Liu W, Xie T, Qiu R (2016) Bamboo fibers grafted with a soybean-oil-based monomer for its unsaturated polyester composites. Cellulose 23:2501

    CAS  Google Scholar 

  150. Liu W, Qiu R, Li K (2016) Effects of fiber extraction, morphology, and surface modification on the mechanical properties and water absorption of bamboo fibers-unsaturated polyester composites. Polym Compos 37:1612

    CAS  Google Scholar 

  151. Fei M-E, Xie T, Liu W, Chen H, Qiu R (2017) Surface grafting of bamboo fibers with 1, 2-epoxy-4-vinylcyclohexane for reinforcing unsaturated polyester. Cellulose 24:5505

    CAS  Google Scholar 

  152. Kumari S, Kumar R, Rai B, Kumar G (2019) Effect of fiber content on thermal and mechanical properties of euphorbia coagulum modified polyester and bamboo fiber composite. Mater Res Express 6:125341.

  153. Kumari S, Kumar R, Rai B, Sirohi S, Kumar G (2020) Study on the modification of polyester resin bamboo fiber-based composite with euphorbia coagulum and their effect on mechanical and thermal properties. J Compos Mater 54:3473

    CAS  Google Scholar 

  154. Zhang K, Wang F, Liang W, Wang Z, Duan Z, Yang B (2018) Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers 10. https://doi.org/10.3390/polym10060608

  155. H Nowruzi Varzeghani, I Amiri Amraei, SR Mousavi (2020) Dynamic cure kinetics and physical-mechanical properties of PEG/nanosilica/epoxy composites. Int J Polymer Sci 2020:1

    Google Scholar 

  156. Mousavi SR, Amiri Amraei I (2016) Influence of nanosilica and methyl methacrylate–butadiene–styrene core–shell rubber particles on the physical-mechanical properties and cure kinetics of diglycidyl ether of bisphenol-A-based epoxy resin. High Perform Polym 28:809

    Google Scholar 

  157. A Kuliaei, IA Amraei, SR Mousavi (2021) Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron. J Polymer Eng

  158. Rashidifard S, Amraei IA, Heidar H, Mousavi SR (2021) Investigating the electrical properties of epoxy resin containing MWCNT–PANI with a core-shell morphology: synthesis and characterization. Polym Sci B 63:418

    Google Scholar 

  159. Mousavi SR, EstajiS, Rostami E, Khonakdar HA, Arjmand M (2021) Effect of a novel green modification of alumina nanoparticles on the curing kinetics and electrical insulation properties of epoxy composites. Polym Adv Technol

  160. Mousavi SR, Amraei IA (2015) Toughening of dicyandiamide-cured DGEBA-based epoxy resin using MBS core-shell rubber particles. J Compos Mater 49:2357

    CAS  Google Scholar 

  161. Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites—a review. Compos B Eng 99:425. https://doi.org/10.1016/j.compositesb.2016.06.051

    Article  CAS  Google Scholar 

  162. Ly EB, Lette MJ, Diallo AK, Gassama A, Takasaki A, Ndiaye D (2019) Effect of reinforcing fillers and fibres treatment on morphological and mechanical properties of typha-phenolic resin composites. Fibers Polymers 20:1046

    CAS  Google Scholar 

  163. Pilato L (2013) Phenolic resins: 100 Years and still going strong. React Funct Polym 73:270

    CAS  Google Scholar 

  164. Xu Y, Guo L, Zhang H, Zhai H, Ren H (2019) Research status, industrial application demand and prospects of phenolic resin. RSC Adv 9:28924

    CAS  Google Scholar 

  165. Xie J, Qi J, Hu T, Cornelis F, Hse CY, Shupe TF (2016) Effect of fabricated density and bamboo species on physical–mechanical properties of bamboo fiber bundle reinforced composites. J Mater Sci 51:7480

    CAS  Google Scholar 

  166. Zheng K, Gao C, He F, Lin Y, Liu M, Lin J (2018) Study on the interfacial functionary mechanism of rare-earth-solution-modified bamboo-fiber-reinforced resin matrix composites. Materials 11:1190

    Google Scholar 

  167. Yu Y, Huang Y, Zhang Y, Liu R, Meng F, Yu W (2019) The reinforcing mechanism of mechanical properties of bamboo fiber bundle-reinforced composites. Polym Compos 40:1463

    CAS  Google Scholar 

  168. Rao F, Ji Y, Li N, Zhang Y, Chen Y, Yu W (2020) Outdoor bamboo-fiber-reinforced composite: Influence of resin content on water resistance and mechanical properties. Const Build Mater 261:120022.

  169. Kumar V, Kumar R (2012) Improved mechanical and thermal properties of bamboo–epoxy nanocomposites. Polym Compos 33:362

    CAS  Google Scholar 

  170. Kumar V, Kumar R (2012) Dielectric and mechanical properties of alkali-and silane-treated bamboo-epoxy nanocomposites. J Compos Mater 46:3089

    Google Scholar 

  171. Zhou S, Li J, Kang S, Zhang D (2020) Effect of carbonized ramosissima nanoparticles on mechanical properties of bamboo fiber/epoxy composites. J Natural Fibers, p 1.

  172. Kumar N, Mireja S, Khandelwal V, Arun B, Manik G (2017) Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study. Compos B Eng 109:277

    CAS  Google Scholar 

  173. Gogoi R, Kumar N, Mireja S, Ravindranath SS, Manik G, Sinha S (2019) Effect of hollow glass microspheres on the morphology, rheology and crystallinity of short bamboo fiber-reinforced hybrid polypropylene composite. Jom 71:548

    CAS  Google Scholar 

  174. Yang F, Long H, Xie B et al (2020) Mechanical and biodegradation properties of bamboo fiber-reinforced starch/polypropylene biodegradable composites. J Appl Polym Sci 137:48694

    CAS  Google Scholar 

  175. Guo J, Cao M, Ren W, Wang H, Yu Y (2021) Mechanical, dynamic mechanical and thermal properties of TiO 2 nanoparticles treatment bamboo fiber-reinforced polypropylene composites. J Mater Sci 56:12643

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ali Khonakdar.

Ethics declarations

Conflict of interest

The authors declare that they do not have a conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.R., Zamani, M.H., Estaji, S. et al. Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies. J Mater Sci 57, 3143–3167 (2022). https://doi.org/10.1007/s10853-021-06854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06854-6

Navigation