Skip to main content
Log in

Effect of grain boundary faceting on kinetics of grain growth and microstructure evolution

  • Grain Boundary and Interface Engineering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Von-Neumann-Mullins relationship for two-dimensional grain growth is modified for the case of grain boundary faceting. It is shown that the anisotropy of grain boundary energy alone slows down the rate of normal grain growth. For highly mobile facets, however, the acceleration of the growth process is possible, accompanied by development of anisotropic microstructure. It is shown that the mean-field approach to the problem of grain growth in highly anisotropic polycrystal results in parabolic growth law similar to that for isotropic systems, with the facet mobility and maximal torque substituting the grain boundary mobility and grain boundary energy in isotropic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Watanabe, Res. Mechanica 11 (1984) 47.

    Google Scholar 

  2. B. W. Krakauer and D. N. Seidman, Acta Mater. 46 (1998) 6145.

    Article  Google Scholar 

  3. M. Takashima, P. Wynblatt and B. L. Adams, Interface Sci. 8 (2000) 351.

    Article  Google Scholar 

  4. U. Wolf, F. Ernst, T. Muschik, M. W. Finnis and H. F. Fischmeister, Phil. Mag. A 66 (1992) 991.

    Google Scholar 

  5. A. P. Sutton and R. W. Balluffi “Interfaces in Crystalline Materials” (Clarendon Press, Oxford, 1995).

    Google Scholar 

  6. F. J. Humphreys and M. Hatherly “Recrystallization and Related Annealing Phenomena” (Elsevier Science, Kidlington, 1996).

    Google Scholar 

  7. A. Kazaryan, Y. Wang, S. A. Dregia and B. R. Patton, Acta Mater. 50 (2002) 2491.

    Google Scholar 

  8. S. B. Lee, D. Y. Yoon and M. F. Henry, Acta Mater. 48 (2000) 3071.

    Google Scholar 

  9. S. B. Lee, N. M. Hwang, D. Y. Yoon and M. F. Henry, Metall. Mater. Trans. A 31 (2000) 985.

    Google Scholar 

  10. J. B. Koo and D. Y. Yoon, Metall. Mater. Trans. A 32 (2001) 469.

    Google Scholar 

  11. V. E. Fradkov and D. Udler, Adv. in Phys. 43 (1994) 739.

    Google Scholar 

  12. C. Herring, in “The Physics of Powder Metallurgy” edited by W. E. Kingston (McGraw-Hill, New York, 1951) p. 143.

    Google Scholar 

  13. J. E. Taylor, Acta Metall. Mater. 40 (1992) 1475.

    Article  Google Scholar 

  14. G. Gottstein and L. S. Shvindlerman “Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications” (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  15. R. Wurschum and R. W. Balluffi, Phys. Stat. Sol. A 136 (1993) 323.

    Google Scholar 

  16. A. Kebbede, J. Parai and A. H. Carim, J. Amer. Ceram. Soc. 83 (2000) 2845.

    Google Scholar 

  17. A. Dakskobler, M. Ceh and T. Kosmac, Key Engng. Mater. 206 (2002) 441.

    Google Scholar 

  18. D. W. Hoffman and J. W. Cahn, Surf. Sci. 31 (1972) 368.

    Article  Google Scholar 

  19. A. H. King, Interface Sci. 7 (1999) 251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Rabkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabkin, E. Effect of grain boundary faceting on kinetics of grain growth and microstructure evolution. J Mater Sci 40, 875–879 (2005). https://doi.org/10.1007/s10853-005-6504-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6504-5

Keywords

Navigation