Skip to main content

Grain Growth and the Effect of Different Time Scales

  • Chapter
  • First Online:
Research in Mathematics of Materials Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 31))

Abstract

Many technologically useful materials are polycrystals composed of a myriad of small monocrystalline grains separated by grain boundaries. Dynamics of grain boundaries play a crucial role in determining the grain structure and defining the materials properties across multiple scales. In this work, we consider two models for the motion of grain boundaries with the dynamic lattice misorientations and the triple junctions drag, and we conduct extensive numerical study of the models, as well as present relevant experimental results of grain growth in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Abels, H. Garcke, L. Müller, Stability of spherical caps under the volume-preserving mean curvature flow with line tension. Nonlinear Anal. 117, 8–37 (2015)

    Article  MathSciNet  Google Scholar 

  2. B.L. Adams, D. Kinderlehrer, W.W. Mullins, A.D. Rollett, S. Ta’asan, Extracting the relative grain boundary free energy and mobility functions from the geometry of microstructures. Scripta Mater. 38(4), 531–536 (1998)

    Article  Google Scholar 

  3. B.L. Adams, S. Ta’Asan, D. Kinderlehrer, I. Livshits, D.E. Mason, C.-T. Wu, W.W. Mullins, G.S. Rohrer, A.D. Rollett, D.M. Saylor, Extracting grain boundary and surface energy from measurement of triple junction geometry. Interface Sci. 7(3), 321–337 (1999)

    Article  Google Scholar 

  4. P. Bardsley, K. Barmak, E. Eggeling, Y. Epshteyn, D. Kinderlehrer, S. Ta’asan, Towards a gradient flow for microstructure. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(4), 777–805 (2017)

    Article  MathSciNet  Google Scholar 

  5. K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan, Critical events, entropy, and the grain boundary character distribution. Phys. Rev. B 83, 134117 (2011)

    Article  Google Scholar 

  6. K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, S. Ta’asan, Geometric growth and character development in large metastable networks. Rend. Mat. Appl. (7) 29(1), 65–81 (2009)

    Google Scholar 

  7. K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta’asan, A.D. Rollett, K.R. Coffey, Grain growth and the puzzle of its stagnation in thin films: The curious tale of a tail and an ear. Progr. Mater. Sci. 58(7), 987–1055 (2013)

    Article  Google Scholar 

  8. K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, S. Ta’asan, An entropy based theory of the grain boundary character distribution. Discr. Contin. Dyn. Syst. 30(2), 427–454 (2011)

    Article  MathSciNet  Google Scholar 

  9. K.A. Brakke, The Motion of a Surface by Its Mean Curvature. Mathematical Notes, vol. 20 (Princeton University Press, Princeton, NJ, 1978)

    Google Scholar 

  10. L. Bronsard, F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. Arch. Rational Mech. Anal. 124(4), 355–379 (1993)

    Article  MathSciNet  Google Scholar 

  11. Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    Article  MathSciNet  Google Scholar 

  12. K. Ecker, Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and their Applications, vol. 57 (Birkhäuser Boston, Inc., Boston, MA, 2004)

    Google Scholar 

  13. Y. Epshteyn, C. Liu, M. Mizuno, Large time asymptotic behavior of grain boundaries motion with dynamic lattice misorientations and with triple junctions drag. Commun. Math. Sci. 19(5), 1403–1428 (2021)

    Article  MathSciNet  Google Scholar 

  14. Y. Epshteyn, C. Liu, M. Mizuno, Motion of grain boundaries with dynamic lattice misorientations and with triple junctions drag. SIAM J. Math. Anal. 53(3), 3072–3097 (2021)

    Article  MathSciNet  Google Scholar 

  15. L.C. Evans, J. Spruck, Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  16. H. Garcke, Y. Kohsaka, D. Ševčovič, Nonlinear stability of stationary solutions for curvature flow with triple function. Hokkaido Math. J. 38(4), 721–769 (2009)

    Article  MathSciNet  Google Scholar 

  17. C. Herring, Surface Tension as a Motivation for Sintering (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 33–69

    Google Scholar 

  18. L. Kim, Y. Tonegawa, On the mean curvature flow of grain boundaries. Ann. Inst. Fourier (Grenoble) 67(1), 43–142 (2017)

    Google Scholar 

  19. D. Kinderlehrer, I. Livshits, G.S. Rohrer, S. Ta’asan, P. Yu, Mesoscale simulation of the evolution of the grain boundary character distribution, in Recrystallization and Grain Growth, pts 1 and 2, vols. 467–470(Part 1-2) (2004), pp. 1063–1068

    Google Scholar 

  20. D. Kinderlehrer, C. Liu, Evolution of grain boundaries. Math. Models Methods Appl. Sci. 11(4), 713–729 (2001)

    Article  MathSciNet  Google Scholar 

  21. D. Kinderlehrer, I. Livshits, S. Ta’asan, A variational approach to modeling and simulation of grain growth. SIAM J. Sci. Comput. 28(5), 1694–1715 (2006)

    Article  MathSciNet  Google Scholar 

  22. R.V. Kohn, Irreversibility and the statistics of grain boundaries. Physics, 4, 33 (2011)

    Article  Google Scholar 

  23. T. Laux, F. Otto, Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calc. Var. Part. Differ. Equa. 55(5), 74 (2016). Art. 129

    Google Scholar 

  24. X. Liu, A.P. Warren, N.T. Nuhfer, A.D. Rollett, K.R. Coffey, K. Barmak, Comparison of crystal orientation mapping-based and image-based measurement of grain size and grain size distribution in a thin aluminum film. Acta Mater. 79, 138–145 (2014)

    Article  Google Scholar 

  25. C. Mantegazza, Lecture Notes on Mean Curvature Flow. Progress in Mathematics, vol. 290 (Birkhäuser/Springer Basel AG, Basel, 2011)

    Google Scholar 

  26. C. Mantegazza, M. Novaga, V.M. Tortorelli, Motion by curvature of planar networks. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(2), 235–324 (2004)

    Google Scholar 

  27. Matlab MathWorks Inc., Matlab. version 9.4.0 (r2018a). The MathWorks Inc., Natick, MA, 2018

    Google Scholar 

  28. W.W. Mullins, Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27(8), 900–904 (1956)

    Article  MathSciNet  Google Scholar 

  29. W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957)

    Article  Google Scholar 

  30. G.S. Rohrer, Influence of interface anisotropy on grain growth and coarsening. Annu. Rev. Mater. Res. 35, 99–126 (2005)

    Article  Google Scholar 

  31. G.S. Rohrer, X. Liu, J. Liu, A. Darbal, X. Chen, M.A. Berkson, N.T. Nuhfer, K.R. Coffey, K. Barmak, The grain boundary character distribution of a highly twinned nanocrystalline aluminum thin film compared to bulk microcrystalline aluminum. J. Mater. Sci. 52, 9819–9833 (2017)

    Article  Google Scholar 

  32. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, P. Wynblatt, The distribution of internal interfaces in polycrystals. Z. Metallkd. 95, 1–18 (2004)

    Article  Google Scholar 

  33. A.D. Rollett, S.-B. Lee, R. Campman, G.S. Rohrer, Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu. Rev. Mater. Res. 37, 627–658 (2007)

    Article  Google Scholar 

  34. S.L. Thomas, C. Wei, J. Han, Y. Xiang, D.J. Srolovitz, Disconnection description of triple-junction motion. Proc. Natl. Acad. Sci. 116(18), 8756–8765 (2019)

    Article  MathSciNet  Google Scholar 

  35. C.E. Torres, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, Numerical analysis of the vertex models for simulating grain boundary networks. SIAM J. Appl. Math. 75(2), 762–786 (2015)

    Article  MathSciNet  Google Scholar 

  36. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Molecular dynamics simulation of triple junction migration. Acta Mater. 50(6), 1405–1420 (2002)

    Article  Google Scholar 

  37. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Triple junction mobility: A molecular dynamics study. Interface Sci. 7(3), 307–319 (1999)

    Article  Google Scholar 

  38. L. Zhang, J. Han, Y. Xiang, D.J. Srolovitz, Equation of motion for a grain boundary. Phys. Rev. Lett. 119, 246101 (2017)

    Article  Google Scholar 

  39. L. Zhang, Y. Xiang, Motion of grain boundaries incorporating dislocation structure. J. Mech. Phys. Solids 117, 157–178 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to David Kinderlehrer for the fruitful discussions, inspiration, and motivation of the work. Matthew Patrick and Amirali Zangiabadi are thanked for assistance with the experimental work. Katayun Barmak acknowledges partial support of NSF DMS-1905492, Yekaterina Epshteyn acknowledges partial support of NSF DMS-1905463, Chun Liu acknowledges partial support of NSF DMS-1950868, and Masashi Mizuno acknowledges partial support of JSPS KAKENHI Grant No. 18K13446, 22K03376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekaterina Epshteyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barmak, K., Dunca, A., Epshteyn, Y., Liu, C., Mizuno, M. (2022). Grain Growth and the Effect of Different Time Scales. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_2

Download citation

Publish with us

Policies and ethics