Skip to main content

Impact of Grain Boundary Character on Faceting and Migration of Low Angle Boundaries and Grain Rotation: Experiments and Simulations

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition

Abstract

The migration and faceting behavior of low angle <100> tilt and mixed grain boundaries was investigated. For measurements on high purity aluminum bicrystals an in-situ technique based on orientation contrast imaging was applied. In contrast to the pure tilt boundaries, the mixed boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gottstein, D. A. Molodov, L. S. Shvindlerman, “Grain-boundary energy and mobility”, in: Metal Process Simulation, ASM Handbook, Vol. 22B, ed. D. U. Furrer, S. L. Siemiatin, (Materials Park: ASM International, 2010), p. 67–91.

    Google Scholar 

  2. A. P. Sutton, and R. W. Balluffi, Interfaces in Crystalline Materials (Oxford: Clarendon Press, 1995).

    Google Scholar 

  3. T. E. Hsieh, and R. W. Balluffi, “Observations of Roughening/De-faceting Phase Transitions in Grain Boundaries”, Acta Metall, 37 (1989), 2133–2139.

    Article  Google Scholar 

  4. B. B. Straumal, S. A. Polyakov, E. Bischoff, W. Gust, E. J. Mittemeijer, “Faceting of S3 and S9 Grain Boundaries in Copper”, Interface Science, 9 (2001), 287–292.

    Article  Google Scholar 

  5. S. B. Lee, W. Sigle, and M. Rühle, “Faceting Behavior of an Asymmetric SrTiO3 S5 [001] Tilt Grain Boundary Close to its Defaceting Transition”, Acta Mater, 51 (2003), 4583–4588.

    Article  Google Scholar 

  6. G. S. Rohrer, „Influence of Interface Anisotropy on Grain Growth and Coarsening“, Annu Rev Mater Res, 35 (2005), 99–126.

    Article  Google Scholar 

  7. G. S. Rohrer, „Grain Boundary Energy Anisotropy: A review“, J Mater Sci 46 (2011), 5881–5895.

    Article  Google Scholar 

  8. D. Y. Yoon, and Y. K. Cho, “Roughening transition of grain boundaries in metals and oxides”, J Mater Sci, 40 (2005), 861–870.

    Article  Google Scholar 

  9. D. A. Molodov et al., „A Novel Experimental Approach to Determine the Absolute Grain Boundary Energy”, Philos Magazine 92 (2012), 4588–4598.

    Article  Google Scholar 

  10. B. B. Straumal et al., “Faceting and migration of twin grain boundaries in zinc”, Zt Metallkd, 96 (2005), 161–166.

    Article  Google Scholar 

  11. B. B. Straumal, V. G. Sursaeva, and A. S. Gornakova, “Influence of faceting-roughening on the triple junction migration in zinc”, Zt Metallkd, 96 (2005), 1147–1151.

    Article  Google Scholar 

  12. V. G. Sursaeva, B. B. Straumal, A. S. Gornakova, L. S. Shvindlerman, and G. Gottstein, “Effect of faceting on grain boundary motion in Zn”, Acta Mater, 56 (2008), 2728–2734.

    Article  Google Scholar 

  13. V. G. Sursaeva, Materials Letters, “Effect of faceting on twin grain boundary motion in zinc”, 64 (2010), 105–107.

    Google Scholar 

  14. J.-E. Brandenburg, L. A. Barrales-Mora, D. A. Molodov, and G. Gottstein, “Motion of a Grain Boundary Facet in Aluminum”, Acta Mater 61 (2013), 5518–5524.

    Article  Google Scholar 

  15. S. B. Lee, D. Y. Yoon, and M. F. Henry, “Abnormal Grain Growth and Grain Boundary Faceting in a Model Ni-Base Superalloy”, Acta Mater 48 (2000), 3071–3080.

    Article  Google Scholar 

  16. S. B. Lee, N. M. Hwang, D. Y. Yoon, and M. F. Henry, “Grain boundary faceting and abnormal grain growth in nickel”, Metall Mater Trans A, 31 (2000), 985–994.

    Article  Google Scholar 

  17. A. Kazaryan, Y. Wang, S. A. Dregia, and B. R. Patton, “Grain Growth in Anisotropic Systems: Comparison of Effects of Energy and Mobility”, Acta Mater, 50 (2002), 2491–2502.

    Article  Google Scholar 

  18. E. Rabkin, “Effect of Grain Boundary Faceting on Kinetics of Grain Growth and Microstructure Evolution”, J Mater Sci, 40 (2005), 875–879.

    Article  Google Scholar 

  19. S.-J. L. Kang, M. G. Lee, and S. M. An, “Microstructural Evolution During Sintering with Control of the Interface Structure”, J Am Ceram Soc, 92 (2009), 1464–1471.

    Article  Google Scholar 

  20. D. M. Kirch, B. Zhao, D. A. Molodov, and G. Gottstein, „Faceting and Migration of Low Angle <100> Tilt Grain Boundaries in Pure Aluminum”, Scripta Mater, 56 (2007), 939–942.

    Article  Google Scholar 

  21. D. M. Kirch, E. Jannot, L. A. Barrales-Mora, D. A. Molodov, G. Gottstein, „Inclination Dependence of Grain Boundary Energy and its Impact on the Faceting and Kinetics of Tilt Grain Boundaries in Aluminium”, Acta Mater, 56 (2008), 4998–5011.

    Article  Google Scholar 

  22. J.-E. Brandenburg, L. A. Barrales-Mora, D. A. Molodov, and G. Gottstein, “Effect of Inclination Dependence of Grain Boundary Energy on the Mobility of Tilt and Non-Tilt Low Angle Grain Boundaries”, Scripta Mater, 68 (2013), 980–983.

    Article  Google Scholar 

  23. J.-E. Brandenburg, L. A. Barrales-Mora, D. A. Molodov, “On Migration and Faceting of Low-Angle Grain Boundaries: Experimental and computentional study”, Acta Mater, 77 (2014), 294–309.

    Article  Google Scholar 

  24. Ch. Verhasselt, G. Gottstein, D. A. Molodov, L. S. Shvindlerman, „Shape of Moving Grain Boundaries in Al-Bicrystals”, Acta Mater, 47 (1999), 887–892.

    Article  Google Scholar 

  25. G. Gottstein, and L. S. Shvindlerman, Grain Boundary Migration in Metals (Boca Raton: CRC Press, 2010).

    Google Scholar 

  26. D. A. Molodov, V. A. Ivanov, and G. Gottstein, “Low Angle Tilt Boundary Migration Coupled to Shear Deformation”, Acta Mater, 55 (2007), 1843–1848.

    Article  Google Scholar 

  27. D. A. Molodov et al., “Mobility of <111> Tilt Grain Boundaries in the Vicinity of Special Misorientation S=7 in Bicrystals of Pure Aluminium”, Scripta Metall Mater, 32 (1995), 529–534.

    Article  Google Scholar 

  28. G. Gottstein, D. A. Molodov, U. Czubayko, and L. S. Shvindlerman, “High-Angle Grain Boundary Migration in Al-Bicrystals”, Journal de Physique IV, 5 (1995), 89–106.

    Article  Google Scholar 

  29. D. A. Molodov, U. Czubayko, G. Gottstein, L. S. Shvindlerman, “On the effect of purity and orientation on grain boundary motion”, Acta Mater, 46 (1998), 553–564.

    Article  Google Scholar 

  30. T. Surholt, D. A. Molodov, and Chr. Herzig, “Orientation Dependence of Ge Diffusion Along Symmetrical [111] Tilt Grain Boundaries in Al”, Acta Mater, 46 (1998), 5345–5355.

    Article  Google Scholar 

  31. G. Gottstein, D. A. Molodov, L. S. Shvindlerman, D. J. Srolovitz, “Grain boundary migration: misorientation dependence”, Curr Opin Solid State Mater Sci, 5 (2001), 9–14.

    Article  Google Scholar 

  32. V. A. Ivanov, D. A. Molodov, L. S. Shvindlerman, and G. Gottstein, “Impact of Boundary Orientation on the Motion of Curved Grain Boundaries in Aluminum Bicrystals”, Mater Science Forum, 467–470 (2004), 751–756.

    Article  Google Scholar 

  33. V. A. Ivanov, D. A. Molodov, L. S. Shvindlerman, and G. Gottstein, “Effect of “Surface” Triple Junction on Curved Boundary Motion in Al-Bictysrals”, Acta Mater, 52 (2004), 969–975.

    Article  Google Scholar 

  34. Ch. Günster, D. A. Molodov, and G. Gottstein, “Migration of Grain Boundaries in Zn”, Acta Mater, 61 (2013), 2363–2375.

    Article  Google Scholar 

  35. D. M. Kirch, A. Ziemons, T. Burlet, I. Lischewski, X. Molodova, D. A. Molodov, and G. Gottstein, “Laser powered heating stage in a scanning electron microscope for microstructural investigations at elevated temperatures”, Rev Sci Instrum, 79 (2008), 043902.

    Article  Google Scholar 

  36. B.-J. Lee, and S.-H. Choi, “Computation of Grain Boundary Energies”, Modelling Simul Mater Sci Eng, 12 (2004), 621.

    Article  Google Scholar 

  37. B.-J. Lee, and M. I. Baskes, “Second Nearest-Neighbor Modified Embedded-Atom-Method Potential”, Phys Rev B, 62 (2000), 8564.

    Article  Google Scholar 

  38. B.-J. Lee, J.-H. Shim, and M. I. Baskes, “Semiempirical Atomic Potentials for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb Based on First and Second Nearest-Neighbor Modified Embedded Atom Method”, Phys Rev B, 68 (2003), 144112.

    Article  Google Scholar 

  39. S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J Comput Phys, 117 (1995), 1–19.

    Article  Google Scholar 

  40. K. G. F. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton, P. M. Derlet, “Computing the mobility of grain boundaries”, Nature Materials, 5 (2006), 124–127.

    Article  Google Scholar 

  41. Y. Huang, and F. J. Humpreys, “Subgrain Growth and Low Angle Boundary Mobility in Aluminium Crystals of Orientation {110}<001>”, Acta Mater, 48 (2000), 2017–2030.

    Article  Google Scholar 

  42. C. C. Yang, A. D. Rollett, and W. W. Mullins, “Measuring Relative Grain Boundary Energies and Mobilities in an Aluminum Foil from Triple Junction Geometry”, Scripta Mater, 44 (2001), 2735–2740.

    Article  Google Scholar 

  43. R. Viswanathan, and C. L. Bauer, “Kinetics of Grain Boundary Migration in Copper Bicrystals with [001] Rotation Axes”, Acta Metall, 21 (1973), 1099–1109.

    Article  Google Scholar 

  44. A. Suzuki, and Y. Mishin, “Atomic Mechanism of Grain Boundary Migrationn,” Mater Science Forum, 502 (2005), 157–162.

    Article  Google Scholar 

  45. J. W. Cahn, Y. Mishin, and A. Suzuki, “Coupling Grain Boundary Motion to Shear Deformation,” Acta Mater, 54 (2006), 4953–4975.

    Article  Google Scholar 

  46. D. A. Molodov, T. Gorkaya, and G. Gottstein, „Mechanically driven migration of <100> tilt grain boundaries in Al-bicrystals”, Mater Science Forum, 558–559 (2007), 927–932.

    Article  Google Scholar 

  47. T. Gorkaya, D. A. Molodov, and G. Gottstein, „Mechanically driven migration of symmetrical <100> tilt grain boundaries in Al bicrystals”, Acta Mater, 57 (2009), 5396–5405.

    Article  Google Scholar 

  48. T. Gorkaya, T. Burlet, D. A. Molodov, and G. Gottstein, “Experimental Method for True In-situ Measurements of Shear-Coupled Grain Boundary Migration”, Scripta Mater, 63 (2010), 633–636.

    Article  Google Scholar 

  49. D. A. Molodov, T. Gorkaya, and G. Gottstein, “Dynamics of Grain Boundaries Under Applied Mechanical Stress”, J Mater Science, 46 (2011), 4318–4326.

    Article  Google Scholar 

  50. Gorkaya T, Molodov KD, Molodov DA, and Gottstein G. „Concurrent Grain Boundary Motion and Grain Rotation Under an Applied Stress”, Acta Mater, 59 (2011), 5674–5680.

    Article  Google Scholar 

  51. D. A. Molodov, T. Gorkaya, and G. Gottstein, “Migration of Ʃ7 tilt grain boundary in Al under an applied external stress”, Scripta Mater, 65 (2011), 990–993.

    Article  Google Scholar 

  52. J. W. Cahn, and J. E. Taylor, “A Unified Approach to Motion of Grain Boundaries, Relative Tangential Translation Along Grain Boundaries, and Grain Rotation,” Acta Mater, (2004), 4887–4898.

    Google Scholar 

  53. S. G. Srinivasan, and J. W. Cahn, in: Science and technology of interfaces, ed. S. Ankem, C. S. Pande, I. Ovidko, R. Ranganathan, (Seattle: TMS, 2002), p. 3–14.

    Google Scholar 

  54. Z. T. Trautt, and Y. Mishin, “Grain Boundary Migration and Grain Rotation Studied by Molecular Dynamics”, Acta Mater, 60 (2012), 2407–2424.

    Article  Google Scholar 

  55. K. A. Wu, and P. W. Voorhees, “Phase Field Crystal Simulations of Nanocrystalline Grain Growth in Two Dimensions”, Acta Mater, 60 (2012), 407–419.

    Article  Google Scholar 

  56. L. A. Barrales-Mora, J.-E. Brandenburg, and D. A. Molodov, “Impact of Grain Boundary Character on Grain Rotation”, Acta Mater, 80 (2014), 141–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Brandenburg, JE., Barrales-Mora, L.A., Molodov, D.A. (2015). Impact of Grain Boundary Character on Faceting and Migration of Low Angle Boundaries and Grain Rotation: Experiments and Simulations. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_33

Download citation

Publish with us

Policies and ethics