Skip to main content
Log in

Structure and vibration characteristics of Ti-Al-Mo-V alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti-5Al-2.5Mo-1.4V rolled plates were subjected to solid-solution heat treatment at 870 or 930C for 1 h and aged for 1–8 h at 460C to investigate the relationship between the microstructure and the vibration characteristics of the alloy. According to the experimental results, the S870 solid solution matrix contains α + α′ + β structures and the S930 solid solution specimen possesses α +α′ structures (β transus is ∼ 900C). Increasing the α′ phase content improves strength and hardness but reduces ductility. It also promotes internal friction and thus increases damping. During the 460C aging process, the α′ phase in the β region of S870/Ah grows and transforms into a finer needle structure and the primary α phase (bounded by prior β grain boundary) of S930/Ah grows within the α′ matrix. Both S830/Ah and S930/Ah reveal similar tendencies in mechanical properties with increased aging time. When the aging time exceeds 1 h, S870/Ah, having a large quantity of β phase, has a better vibration damping ratio than S930/Ah (containing a great quantity of primary α phase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. GRADY and B. A. LERCH, NASA Lewis Research Center, SAMPE Quarterly (USA) 23(2) (1992) 11.

    Google Scholar 

  2. A. P. YAKOVLEV, A. U. BEREGOVENKO and V. S. LUKYANOV, Problemy Prochnosti 5 (1998) 71.

    Google Scholar 

  3. S. MUNEKI, Y. KAWABE and J. TAKAHASHI, J. Jpn Inst. Met. 57(3) (1993) 268.

    Google Scholar 

  4. K. RUDINGER, Z. Werkstofftech 13(7) (1982) 229.

    Article  Google Scholar 

  5. X. S. GUAN, H. NUMAKURA, M. KOIWA, K. HASEGAWA and C. OUCHI, Mater. Sci. Engng. A 272(1) (1999) 230.

    Article  Google Scholar 

  6. L. A. BOCHHAROVA and V. V. MATVEEV, Problemy Prochnosti 5 (1973) 48.

    Google Scholar 

  7. Y. U. N. V’YUNENKO, B. S. KRYLOV and V. A. LIKHACHEV, Fiz. Met. Metall. 49(5) (1980) 1032.

    Google Scholar 

  8. X. L. LU, W. CAI and L. C. ZHAO, J. Mater. Sci. Lett. 22(18) (2003) 1243.

    Article  Google Scholar 

  9. A. Z. PIMENOVA, A. P. TERNOVSKII and S. V. IVANOV, Intern. J. Fatigue 3(4) (1981) 205.

    Article  Google Scholar 

  10. A. G. KLABUKOV and A. M. ZUEV, Mashinostroenie 3 (1974) 120.

    Google Scholar 

  11. A. OGAWA, M. NIIKURA, C. OUCHI, K. MINIKAWA and M. YAMADA, Int. J. Test. Eval. (1996) 100.

  12. H. ONODERA, Y. RO, T. YAMAGATA and M. YAMAZAKI, Titan. Sci.Techn. 3(1985) 1883.

    Google Scholar 

  13. B. T. WANG and C. R. FULLER, J. Chin. Soc. Mech. Engng. 15(1) (1994) 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Yi Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, FY., Lui, TS. Structure and vibration characteristics of Ti-Al-Mo-V alloy. J Mater Sci 40, 3683–3688 (2005). https://doi.org/10.1007/s10853-005-3310-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3310-z

Keywords

Navigation