Skip to main content

Advertisement

Log in

Effect of Mechanical Vibration on Microstructure and Mechanical Properties of AlSi5Cu3 Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The objective of the present study was to investigate the impact of mechanical vibration on the microstructure and mechanical properties of AlSi5Cu3 alloy. To achieve this, a custom vibrating setup was developed in-house to apply mechanical vibrations to the aluminum alloy. The vibrations were applied at a fixed frequency of 30 Hz, with varying vibrational amplitudes of 10, 15, and 20 μm, and different vibration times of 1, 1:30, and 2 min. The analysis of the conventional cast sample revealed a coarse dendritic structure with an average grain count of 2316 grains/mm2. This sample exhibited the lowest hardness and ultimate tensile strength measuring 38.25 HRB and 172 MPa, respectively. However, as the vibrational amplitude and time increased, significant improvements were observed in grain refinement and mechanical properties. The maximum grain refinement was achieved at a vibrational amplitude of 20 μm and a vibration time of 2 min. Under these conditions, the number of grains per unit area increased to 3785 grains/mm2, representing a 63% increment. Additionally, the coarse dendritic structure transformed into an equiaxed grain structure. The maximum percentage increment of hardness, ultimate tensile strength, and yield strength is 19, 16, and 16% for 20 μm of vibrational amplitude and vibration time of 2 min as compared to the conventional cast sample. The hardness, ultimate tensile strength and yield strength are 45.39 HRB, 199 MPa and 141 MPa, respectively. These findings highlight the positive influence of mechanical vibration on the microstructure and mechanical properties of AlSi5Cu3 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  1. A. Ramanathan, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.03.033

    Article  Google Scholar 

  2. G.E. Totten, D.S. MacKenzie (eds.), Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes (CRC Press, 2003)

    Google Scholar 

  3. S. Rangrej, S. Pandya, J. Menghani, Effects of TiB2 reinforcement proportion on structure and properties of stir cast A713 composites. Can. Metall. Q. (2022). https://doi.org/10.1007/s12666-022-02509-5

    Article  Google Scholar 

  4. J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2011)

    Google Scholar 

  5. A. Cantor, K. O’Reilly, Solidification and Casting (CRC Press, 2016)

    Book  Google Scholar 

  6. W.D. Callister Jr., D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach (John Wiley & Sons, 2020)

    Google Scholar 

  7. A.M. Jaber, P.K. Krishnan, Development of a sustainable novel aluminum alloy from scrap car wheels through a stir-squeeze casting process. Kovove Mater. Metall. Mater. 60(3), 151–161 (2022). https://doi.org/10.4149/km_2022_3_151

    Article  Google Scholar 

  8. R. Arunachalam, P.K. Krishnan, Compressive Response of Aluminum Metal Matrix Composites, in Encyclopedia of Materials: Composites. (Elsevier Ltd., 2021), pp.1–21

    Google Scholar 

  9. R.P. Barot, R.P. Desai, M.P. Sutaria, Recycling of aluminium matrix composites (AMCs): a review and the way forward. Int. J. Metalcast.Metalcast. (2022). https://doi.org/10.1007/s40962-022-00613-0

    Article  Google Scholar 

  10. D.N. Patel, M.P. Sutaria, Effect of trace rare earth Er addition on microstructure and tensile properties of 319 Al–Si–Cu alloy. Int. J. Metalcast.Metalcast. 16(4), 2199–2209 (2022). https://doi.org/10.1007/s40962-022-00661-6

    Article  CAS  Google Scholar 

  11. M. Malekan, S.G. Shabestari, Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall. Mater. Trans. A 40(13), 3196 (2009). https://doi.org/10.1007/s11661-009-0045-9

    Article  Google Scholar 

  12. R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Improved properties of A319 aluminum casting alloy modified with Zr. Mater. Lett. 60(21–22), 2606–2610 (2006). https://doi.org/10.1016/j.matlet.2006.01.012

    Article  CAS  Google Scholar 

  13. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast.Metalcast. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  14. H. Tahiri, S.S. Mohamed, H.W. Doty et al., Effect of Sr–grain refining–Si interactions on the microstructural characteristics of Al–Si hypoeutectic alloys. Int. J. Metalcast.Metalcast. 12, 343–361 (2018). https://doi.org/10.1007/s40962-017-0169-0

    Article  CAS  Google Scholar 

  15. A.M. Samuel, H.W. Doty, S. Valtierra et al., A metallographic study of grain refining of Sr-modified 356 alloy. Int. J. Metalcast.Metalcast. 11, 305–320 (2017). https://doi.org/10.1007/s40962-016-0075-x

    Article  Google Scholar 

  16. A.M.A. Mohamed, M.F. Ibrahim, E. Samuel et al., Assessment of the effect of Mg addition on the solidification behavior, tensile and impact properties of Al–Si–Cu cast alloys. Int. J. Metalcast.Metalcast. 17, 82–108 (2023). https://doi.org/10.1007/s40962-022-00786-w

    Article  CAS  Google Scholar 

  17. P.K. Krishnan, J.V. Christy, R. Arunachalam, A.H.I. Mourad, R. Muraliraja, M. Al-Maharbi, V. Murali, M.M. Chandra, Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: influence on microstructure and mechanical properties. J. Alloys Compd. 784, 1047–1061 (2019). https://doi.org/10.1016/j.jallcom.2019.01.226

    Article  CAS  Google Scholar 

  18. A.H.I. Mourad, J.V. Christy, P.K. Krishnan, M.S. Mozumder, Production of novel recycled hybrid metal matrix composites using optimized stir squeeze casting technique. J. Manuf. Process. 88, 45–58 (2023). https://doi.org/10.1016/j.jmapro.2022.09.005

    Article  Google Scholar 

  19. S. Rangrej, V. Mehta, V. Ayar, M. Sutaria, Effects of stir casting process parameters on dispersion of reinforcement particles during preparation of metal composites. Mater. Today Proc. 43, 471–475 (2021). https://doi.org/10.1016/j.matpr.2021.04.153

    Article  Google Scholar 

  20. V.R. Mehta, M.P. Sutaria, Investigation on the effect of stirring process parameters on the dispersion of SiC particles inside melting crucible. Met. Mater. Int.. Mater. Int. 27, 2989–3002 (2021). https://doi.org/10.1007/s12540-021-00925-1

    Article  CAS  Google Scholar 

  21. J. Campbell, Effects of vibration during solidification. Int. Met. Rev. 26(1), 71–108 (1981)

    Article  CAS  Google Scholar 

  22. B. Limmaneevichitr, S. Pongananpanya, J. Kajornchaiyakul, Metallurgical structure of A356 aluminum alloy solidified under mechanical vibration: an investigation of alternative semi-solid casting routes. Mater. Des. 30(9), 3925–3930 (2009). https://doi.org/10.1016/j.matdes.2009.03.008

    Article  CAS  Google Scholar 

  23. H.M. Guo, A.S. Zhang, X.J. Yang, M.M. Yan, Grain refinement of Al–5% Cu aluminum alloy under mechanical vibration using meltable vibrating probe. Trans. Nonferrous Met. Soc. China 24(8), 2489–2496 (2014). https://doi.org/10.1016/S1003-6326(14)63305-3

    Article  CAS  Google Scholar 

  24. C. Vian, C. Kibbey, Y. Chen et al., Cooling-assisted ultrasonic grain refining of aluminum E380 die casting alloy. Int. J. Metalcast.Metalcast. 16, 842–852 (2022). https://doi.org/10.1007/s40962-021-00647-y

    Article  CAS  Google Scholar 

  25. M.C. Mehta, D. Mandal, S.K. Chaudhury, Microstructural changes and quality improvement of Al7Si0.2Mg (356) alloy by die vibration. Int. J. Metalcast.Metalcast. 14, 987–998 (2020). https://doi.org/10.1007/s40962-020-00408-3

    Article  CAS  Google Scholar 

  26. M.S.S. Rao, A. Kumar, Experimental study and optimization of process parameters for producing semi-solid A392 alloy using vibration-assisted cooling slope process integrated with mould vibration. Int. J. Metalcast.Metalcast. (2023). https://doi.org/10.1007/s40962-023-01075-w

    Article  Google Scholar 

  27. Q. Zhang, D. Sun, S. Pan, M. Zhu, Microporosity formation and dendrite growth during solidification of aluminum alloys: modeling and experiment. Int. J. Heat Mass Transf. 146, 118838 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118838

    Article  CAS  Google Scholar 

  28. B. Vandersluis, C. Ravindran, Influence of solidification rate on the microstructure, mechanical properties, and thermal conductivity of cast A319 Al alloy. J. Mater. Sci. 54(5), 4325–4339 (2019). https://doi.org/10.1007/s10853-018-3022-3

    Article  CAS  Google Scholar 

  29. L.I. Gan, W.Y. Qu, L.U.O. Min, L. Cheng, G.U.O. Chuan, X.G. Li, X.U. Zhen, X.G. Hu, D.Q. Li, H.X. Lu, Z.W. Guo, Z. Guo, M. Jiang, X. Li, J. Yang, Effects of grain refinement and dispersoids on the mechanical properties and corrosion behavior of an Al–Cu–Li–Mg–Zr alloy. Mater. Sci. Eng. A 711, 558–570 (2018). https://doi.org/10.1016/j.msea.2017.11.016

    Article  CAS  Google Scholar 

  30. A. Hekmat-Ardakan, F. Ajersch, Effect of conventional and rheocasting processes on microstructural characteristics of hypereutectic Al–Si–Cu–Mg alloy with variable Mg content. J. Mater. Process. Technol. 210(5), 767–775 (2010). https://doi.org/10.1016/j.jmatprotec.2009.12.009

    Article  CAS  Google Scholar 

  31. V. Chak, H. Chattopadhyay, T.L. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Process. 56, 1059–1074 (2020). https://doi.org/10.1016/j.jmapro.2020.09.041

    Article  Google Scholar 

  32. K.K. Chawla, Composite Materials: Science and Engineering (Springer Science and Business Media, 2012)

    Book  Google Scholar 

  33. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Int. J. Metalcast.Metalcast. 14(2), 291–317 (2020). https://doi.org/10.1007/s40962-019-00388-w

    Article  CAS  Google Scholar 

  34. V.S. Ayar, T.R. Mehta, M.P. Sutaria, Enhancement of mechanical properties of AlSi5Cu3 aluminum alloy using TiB2 reinforcements. IOP Conf. Ser. Mater. Sci. Eng. 455(1), 012127 (2018). https://doi.org/10.1088/1757-899X/455/1/012127

    Article  Google Scholar 

  35. R.P. Barot, R.P. Desai, M.P. Sutaria, Effect of processing temperature on the synthesis of in situ AlSi5Cu3/TiB2 composites cast in metal mold: structural and mechanical characterizations. Int. J. Metalcast.Metalcast. (2023). https://doi.org/10.1007/s40962-023-01067-w

    Article  Google Scholar 

  36. T. Dorin, M. Ramajayam, A. Vahid, T. Langan, Aluminium Scandium Alloys, in Fundamentals of Aluminium Metallurgy. (Woodhead Publishing, 2018)

    Google Scholar 

  37. R.M. Pillai, K.B. Kumar, B.C. Pai, A simple inexpensive technique for enhancing density and mechanical properties of Al–Si alloys. J. Mater. Process. Technol. 146(3), 338–348 (2004). https://doi.org/10.1016/j.jmatprotec.2003.10.004

    Article  CAS  Google Scholar 

  38. W. Jiang, Z. Fan, X. Chen, B. Wang, H. Wu, Combined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting. Mater. Sci. Eng. A 619, 228–237 (2014). https://doi.org/10.1016/j.msea.2014.08.002

    Article  CAS  Google Scholar 

  39. W. Jiang, X. Chen, B. Wang et al., Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting. Int. J. Adv. Manuf. Technol. 83, 167–175 (2016). https://doi.org/10.1007/s00170-015-7586-0

    Article  Google Scholar 

  40. G. Chirita, I. Stefanescu, D. Soares, F.S. Silva, Influence of vibration on the solidification behaviour and tensile properties of an Al-18 wt%Si alloy. Mater. Des. 30, 1575–1580 (2009). https://doi.org/10.1016/j.matdes.2008.07.045

    Article  CAS  Google Scholar 

  41. V. Selivorstov, Y. Dotsenko, K. Borodianskiy, Influence of low-frequency vibration and modification on solidification and mechanical properties of Al–Si casting alloy. Materials 10, 560 (2017)

    Article  Google Scholar 

  42. F. Taghavi, H. Saghafian, Y.H.K. Kharrazi, Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy. Mater. Des. 30, 1604–1611 (2009). https://doi.org/10.1016/j.matdes.2008.07.032

    Article  CAS  Google Scholar 

  43. D.P. Shukla, D.P. Goel, P.C. Pandey, Influence of vibration during solidification on ingot soundness and mechanical properties of aluminum alloy test castings. All India Semin. Alum. 1, 26 (1978)

    Google Scholar 

  44. J. Bast, J. Hübler, C. Dommaschk, Influence of vibration during solidification of molten metals on structure and casting properties. Adv. Eng. Mater. 6(7), 550–554 (2004). https://doi.org/10.1002/adem.200400418

    Article  CAS  Google Scholar 

  45. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int. J. Metalcast.Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00370-6

    Article  CAS  Google Scholar 

  46. V.S. Ayar, M.P. Sutaria, Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Int. J. Metalcast.Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-021-00640-0

    Article  CAS  Google Scholar 

  47. N. Omura, T. Tamura, K. Miwa, H. Furukawa, M. Harada, T. Kubo, Effects of mechanical vibration on gravity die casting of AC4C aluminum alloy. National Institute of Advanced Industrial Science and Technology (AIST), Aluminium Alloys (2010), pp. 1650–1655

  48. S. Rangrej, S. Pandya, J. Menghani, Effects of reinforcement additions on properties of aluminium matrix composites–a review. Mater. Today Proc. 44, 637–641 (2021). https://doi.org/10.1016/j.matpr.2020.10.604

    Article  CAS  Google Scholar 

  49. W. Jiang, Z. Fan, X. Chen et al., Combined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting. Mater. Sci. Eng. A 619, 228–237 (2014). https://doi.org/10.1016/j.msea.2014.09.102

    Article  CAS  Google Scholar 

  50. S. Kumar, S.P. Tewari, Metallurgical and Mechanical characterization of A319 aluminum alloy casting solidified under mold oscillation. Int. J. Metalcast.Metalcast. 12, 28–35 (2018). https://doi.org/10.1007/s40962-017-0135-x

    Article  Google Scholar 

  51. Q. Tan, J. Zhang, Q. Sun et al., Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater. Mater. 196, 1–16 (2020). https://doi.org/10.1016/j.actamat.2020.06.026

    Article  CAS  Google Scholar 

  52. Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall-Petch effect–a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495–512 (2016). https://doi.org/10.1080/09506608.2016.1191808

    Article  CAS  Google Scholar 

  53. Y. Yoshitake, K. Yamamoto, N. Sasaguri, H. Era, Grain refinement of Al–2% Cu alloy using vibrating mold. Int. J. Metalcast.Metalcast. 13, 553–560 (2019). https://doi.org/10.1007/s40962-018-0289-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Department of Science and Technology (DST), New Delhi, sponsored SMART Foundry Project (DST/TSG/ AMT/2015/332 dated 17/08/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek S. Ayar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayar, V.S., Gajjar, D.J. & Sutaria, M.P. Effect of Mechanical Vibration on Microstructure and Mechanical Properties of AlSi5Cu3 Alloy. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01179-3

Keywords

Navigation