Skip to main content
Log in

NMR and molecular fluorescence spectroscopic study of the structure and thermodynamic parameters of EGCG/β-cyclodextrin inclusion complexes with potential antioxidant activity

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The present study is focused on the characterization of the interaction between (−)-epigallocatechingallate (EGCG) and cyclodextrins like β-cyclodextrin (βCD), heptakis(2,6 di-O-methyl)-β-cyclodextrin (DMβCD), and hydroxypropyl-β-cyclodextrin (HPβCD) in aqueous solution. These inclusion complexes previously demonstrated improvements in the antioxidant activity respect to free EGCG. The structural evidence obtained by 2D-ROESY and selective 1D-ROESY experiments was rationalized by autodock studies and indicates that all the complexes have similar inclusion geometries, but the difference resides on the exposition degree of the antioxidant rings of EGCG, such as pyrogallol and galloyl groups. The thermodynamic study allowed estimating that the inclusion process is entalpically driven for the derivatized cyclodextrins complexes and entropically driven for βCD complexes due to the predominance of hydrophobic interactions with EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  2. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  CAS  Google Scholar 

  3. Del Valle, M.E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  4. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  5. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. J. Trends Food Sci. Technol. 15, 137–142 (2004)

    Article  CAS  Google Scholar 

  6. Szente, L., Szejtli, J.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005)

    Article  Google Scholar 

  7. Gould, S., Scott, R.C.: 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 43, 1451–1459 (2005)

    Article  CAS  Google Scholar 

  8. Feng, W.Y.: Metabolism of green tea catechins: an overview. Curr. Drug Metab. 7, 755–809 (2006)

    Article  CAS  Google Scholar 

  9. Yamauchi, R., Sasaki, K., Yoshida, K.: Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. Toxicol. In Vitro 23, 834–839 (2009)

    Article  CAS  Google Scholar 

  10. Henning, S.M., Wang, P., Heber, D.: Chemopreventive effects of tea in prostate cancer: green tea versus black tea. Mol. Nutr. Food Res. 55, 905–920 (2011)

    Article  CAS  Google Scholar 

  11. Duhon, D., Bigelow, R., Coleman, D., Steffan, J., Yu, C., Langston, W., Kevil, C., Cardelli, J.: The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol. Carcinog. 49, 739–749 (2010)

    CAS  Google Scholar 

  12. Connors, S., Chornokur, G., Kumar, N.: New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutr. Cancer 64, 4–22 (2012)

    Article  CAS  Google Scholar 

  13. Ye, F., Zhang, G., Guan, B., Xu, X.: Suppression of esophageal cancer cell growth using curcumin, (−)-epigallocatechin-3-gallate and lovastatin. World J. Gastroenterol. 18, 126–135 (2012)

    Article  CAS  Google Scholar 

  14. Li, G., Lin, W., Araya, J., Chen, T., Timmermann, B., Guo, G.: A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol. Appl. Pharmacol. 258, 268–274 (2012)

    Article  CAS  Google Scholar 

  15. Thakur, V.S., Gupta, K., Gupta, S.: The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr. Pharm. Biotechnol. 13, 191–199 (2012)

    Article  CAS  Google Scholar 

  16. Lin, Q., Akesson, B., Bergenstahl, B.: Effect of colloidal structures on the stability of five flavonoids with different hydrophilicity. Food Hydrocolloids 22, 700–705 (2008)

    Article  CAS  Google Scholar 

  17. Yang, C., Lambert, J., Ju, J., Lu, G., Sang, S.: Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol. 224, 265–273 (2007)

    Article  CAS  Google Scholar 

  18. Mochizuki, M., Yamazaki, S., Kano, K., Ikeda, T.: Kinetic analysis and mechanistic aspects of autoxidation of catechins. Biochim. Biophys. Acta 1569, 35–44 (2002)

    Article  CAS  Google Scholar 

  19. Sang, S., Yang, I., Buckley, B., Ho, C., Yang, C.: Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (−)-epigallocatechin-3-gallate: studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radical Biol. Med., 43, 362–371 (2007)

    Google Scholar 

  20. Su, Y.L., Leung, L.K., Huang, Y., Chen, Z.: Stability of tea theaflavins and catechins. Food Chem. 83, 189–195 (2003)

    Article  CAS  Google Scholar 

  21. Folch-Cano, C., Jullian, C., Speisky, H., Olea-Azar, C.: Antioxidant activity of inclusion complexes of tea catechins with [beta]-cyclodextrins by ORAC assays. Food Res. Int. 43, 2039–2044 (2010)

    Article  CAS  Google Scholar 

  22. Ishizu, T., Kajitani, S., Tsutsumi, H., Sato, T., Yamamoto, H., Hirata, C.: Configurational studies of complexes of tea catechins with caffeine and various cyclodextrins. Planta Med. 77, 1099–1109 (2011)

    Article  CAS  Google Scholar 

  23. Ishizu, T., Kajitani, S., Tsutsumi, H., Yamamoto, H., Harano, K.: Diastereomeric difference of inclusion modes between (−)-epicatechin gallate, (−)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent. Magn. Reson. Chem. 46, 448–456 (2008)

    Article  CAS  Google Scholar 

  24. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc., 71, 2703–2707 (1949)

    Google Scholar 

  25. Connors, K.A.: Binding Constants: The Measurement of Molecular Complex Stability, 1st edn. Wiley Interscience, New York (1987)

    Google Scholar 

  26. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Cliford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 98 (revision a.7). Gaussian, Inc., Pittsburgh (1998)

  27. Yong, C., Washington, C., Smith, W.: Structural behaviour of 2-hydroxypropyl-beta-cyclodextrin in water: molecular dynamics simulation studies. Pharm. Res. 25, 1092–1099 (2008)

    Article  CAS  Google Scholar 

  28. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  CAS  Google Scholar 

  29. Ishizu, T., Hirata, C., Yamamoto, H., Harano, K.: Structure and intramolecular flexibility of beta-cyclodextrin complex with (−)-epigallocatechin gallate in aqueous solvent. Magn. Res. Chem. 44, 776–783 (2006)

    Article  CAS  Google Scholar 

  30. Proniuk, S., Liederer, B.M., Blanchard, J.: Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention. J. Pharm. Sci. 91, 111–116 (2002)

    Article  CAS  Google Scholar 

  31. Szejtly, J.: Cyclodextrin Technology, 1st edn, vol. 1, pp. 1–78. Kluwer Academic, Dordrecht (1988)

  32. Jullian, C., Orosteguis, T., Pérez-Cruz, F., Sánchez, P., Mendizabal, F., Olea-Azar, C.: Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study. Spectrochim. Acta A, 71, 269–275 (2008)

    Google Scholar 

  33. Jullian, C., Alfaro, M., Zapata-Torres, G., Olea-Azar, C.: Inclusion complexes of cyclodextrins with galangin: a thermodynamic and reactivity study. J. Sol. Chem. 39, 1168–1177 (2010)

    Article  CAS  Google Scholar 

  34. Jullian, C., Brossard, V., Gonzalez, I., Alfaro, M., Olea-Azar, C.: Cyclodextrins–Kaempferol inclusion complexes: spectroscopic and reactivity studies. J. Sol. Chem. 40, 727–739 (2011)

    Article  CAS  Google Scholar 

  35. Jullian, C., Cifuentes, C., Alfaro, M., Miranda, S., Barriga, G., Olea-Azar, C.: Spectroscopic characterization of the inclusion complexes of luteolin with native and derivatized [beta]-cyclodextrin. Bioorg. Med. Chem. 18, 5025–5031 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONICYT Project 24091025 and FONDECYT Project 11080038. Christian Folch-Cano gratefully acknowledges the contribution of CONICYT-CHILE for a Ph.D. fellowship. J. Guerrero gratefully acknowledges the contribution of MECESUP-0007 for an NMR spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Jullian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folch-Cano, C., Guerrero, J., Speisky, H. et al. NMR and molecular fluorescence spectroscopic study of the structure and thermodynamic parameters of EGCG/β-cyclodextrin inclusion complexes with potential antioxidant activity. J Incl Phenom Macrocycl Chem 78, 287–298 (2014). https://doi.org/10.1007/s10847-013-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0297-y

Keywords

Navigation