Skip to main content
Log in

Control of Robot Manipulators in Terms of Quasi-Velocities

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we present new control algorithms for robots with dynamics described in terms of quasi-velocities (Kozłowski, Identification of articulated body inertias and decoupled control of robots in terms of quasi-coordinates. In: Proc. of the 1996 IEEE International Conference on Robotics and Automation, pp. 317–322. IEEE, Piscataway, 1996a; Zeitschrift für Angewandte Mathematik und Mechanik 76(S3):479–480, 1996c; Robot control algorithms in terms of quasi-coordinates. In: Proc. of the 34 Conference on Decision and Control, pp. 3020–3025, Kobe, 11–13 December 1996, 1996d). The equations of motion are written using spatial quantities such as spatial velocities, accelerations, forces, and articulated body inertia matrices (Kozłowski, Standard and diagonalized Lagrangian dynamics: a comparison. In: Proc. of the 1995 IEEE Int. Conf. on Robotics and Automation, pp. 2823–2828. IEEE, Piscataway, 1995b; Rodriguez and Kreutz, Recursive Mass Matrix Factorization and Inversion, An Operator Approach to Open- and Closed-Chain Multibody Dynamics, pp. 88–11. JPL, Dartmouth, 1998). The forward dynamics algorithms incorporate new control laws in terms of normalized quasi-velocities. Two cases are considered: end point trajectory tracking and trajectory tracking algorithm, in general. It is shown that by properly choosing the Lyapunov function candidate a dynamic system with appropriate feedback can be made asymptotically stable and follows the desired trajectory in the task space. All of the control laws have a new architecture in the sense that they are derived, in the so-called quasi-velocity and quasi-force space, and at any instant of time generalized positions and forces can be recovered from order \(O({\cal N})\) recursions, where \({\cal N}\) denotes the number of degrees of freedom of the manipulator. This paper also contains the proposition of a sliding mode control, originally introduced by Slotine and Li (Int J Rob Res 6(3):49–59, 1987), which has been extended to the sliding mode control in the quasi-velocity and quasi-force space. Experimental results illustrate behavior of the new control schemes and show the potential of the approach in the quasi-velocity and quasi-force space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besançon, G.: Global output feedback tracking control for a class of Lagrangian systems. Automatica 36, 1915–1921 (2000)

    MATH  Google Scholar 

  2. Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In: Proc. of the IFAC (IFIF) IMACS Int. Symp. on the Theory of Robots, pp. 365–370, Vienna, 3–5 December 1986

  3. Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, London (1996)

    MATH  Google Scholar 

  4. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Dordrecht (1987)

    Google Scholar 

  5. Featherstone, R.: A divide–and–conquer articulated–body algorithm for paraller O(log(n)) calculation of rigid-body dynamics. Part 1: basic algorithm. Int. J. Rob. Res. 18, 867–875 (1999a)

    Article  Google Scholar 

  6. Featherstone, R.: A divide-and-conquer articulated-body algorithm for paraller O(log(n)) calculation of rigid-body dynamics. Part 2: trees, loops, and accuracy. Int. J. Rob. Res. 18, 876–892 (1999b)

    Article  Google Scholar 

  7. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 826–833, San Francisco, CA, April 2000

  8. Herman, P., Kozłowski, K.: A comparison of certain quasi-velocities approaches in PD joint space control. In: Proc. of the 2001 IEEE International Conference on Robotics & Automation, pp. 3819–3824, Seoul, 21–26 May 2001

  9. Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 571–584 (1995)

    Article  Google Scholar 

  10. Khosla, P.K.: Real-time control and identification of direct-drive manipulators. Ph.D. thesis, Carnegie-Mellon University (1986)

  11. Kozłowski, K.: Robot dynamics models in terms of generalized and quasi-coordinates: a comparison. Appl. Math. Comput. Sci. 5(2), 305–328 (1995a)

    MATH  Google Scholar 

  12. Kozłowski, K.: Standard and diagonalized Lagrangian dynamics: a comparison. In: Proc. of the 1995 IEEE Int. Conf. on Robotics and Automation, pp. 2823–2828. IEEE, Piscataway (1995b)

    Google Scholar 

  13. Kozłowski, K.: Identification of articulated body inertias and decoupled control of robots in terms of quasi-coordinates. In: Proc. of the 1996 IEEE International Conference on Robotics and Automation, pp. 317–322. IEEE, Piscataway (1996a)

    Google Scholar 

  14. Kozłowski K.: Diagonalized equations of motion: numerical results and computational complexity. Arch. Control Sci. 5(XLI)(1–2), 61–85 (1996b)

    Google Scholar 

  15. Kozłowski, K.: Standard and diagonalized lagrangian dynamics for robot manipulators. Z. Angew. Math. Mech. 76(S3), 479–480 (1996c)

    MATH  Google Scholar 

  16. Kozłowski, K.: Robot control algorithms in terms of quasi-coordinates. In: Proc. of the 34 Conference on Decision and Control, pp. 3020–3025, Kobe, 11–13 December 1996 (1996d)

  17. Kozłowski, K., Dutkiewicz, P., Wroblewski, W.: Modeling and Control of Robots. National Scientific, Warsaw (2003) (in Polish)

  18. Kozłowski, K., Herman, P.: A comparison of control algorithms for serial manipulators in terms of quasi-velocities. In: Proc. of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2000, pp. 1540–1545, Kagawa University, Takamatsu, 30 October–5 November 2000

  19. Kwatny, H.G., Blankenship, G.L.: Nonlinear Control and Analytical Mechanics. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  20. Loria, A., Melhem, K.: Position feedback global tracking control of el systems: a state transformation approach. IEEE Trans. Automat. Contr. 47(5), 841–847 (2002)

    Article  MathSciNet  Google Scholar 

  21. Luh, J.Y.S., Walker, M.W., Paul, R.P.: Resolved acceleration control of mechanical manipulators. IEEE Trans. Automat. Contr. 25(3), 468–474 (1980)

    Article  MATH  Google Scholar 

  22. MATLAB: User’s Guide. The Mathworks, Natick (1994)

  23. McMillan, S., Orin, D.E.: Efficient computation of articulated-body inertias using successive axial screws. IEEE Trans. Robot. Autom. 11, 606–611 (1995)

    Article  Google Scholar 

  24. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: A spatial operator algebra for manipulator modeling and control. Int. J. Rob. Res. 10, 371–381 (1991)

    Article  Google Scholar 

  25. Rodriguez, G., Kreutz, K.: Recursive Mass Matrix Factorization and Inversion, An Operator Approach to Open- and Closed-Chain Multibody Dynamics, Report no. 88–11. JPL, Dartmouth (1988)

  26. Rodriguez, G., Scheid, R.E.: Recursive Inverse Kinematics for Robot Arms via Kalman Filtering and Bryson-Frazier Smoothing. In: AIAA Guidance, Navigation, and Control Conference, pp. 192–198. Monterey, CA, August 1987

  27. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York (1996).

    Google Scholar 

  28. Slotine, J.-J., Li, W.: On the adaptive control of robot manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  29. Slotine, J.-J., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  30. Spong, M.: Remarks on robot dynamics: canonical transformations and Riemannian geometry. In: Proc. IEEE Conference on Robotics and Automation, pp. 554–559, Nice, May 1992

  31. Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103, 119–125 (1981)

    Article  MATH  Google Scholar 

  32. Walker, M.W., Orin, D.E.: Efficient dynamics computer simulation of robotics mechanisms. J. Dyn. Syst. Meas. Control 104, 205–211 (1982)

    MATH  Google Scholar 

  33. Wen, J.T., Bayard, D.S.: New class of control laws for robotic manipulators. Part 1. Non-adaptive case. Int. J. Control 47(5), 1361–1385 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wen, J.T.: A unified perspective on robot control: the energy lyapunov function approach. Int. J. Adapt. Control Signal Process. 4, 487–500 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Kozłowski.

Additional information

Authors are with Chair of Control and Systems Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozłowski, K., Herman, P. Control of Robot Manipulators in Terms of Quasi-Velocities. J Intell Robot Syst 53, 205–221 (2008). https://doi.org/10.1007/s10846-008-9237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9237-2

Keywords

Navigation