Skip to main content
Log in

Robust tracking control of a three-degree-of-freedom robot manipulator with disturbances using an integral sliding mode controller

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Robot systems often face highly nonlinear manipulator dynamics and uncertainties such as external disturbances, payload variations, and end effector modeling errors. Therefore, it is of great industrial importance to compute and simulate the dynamic response of these manipulators in a reliable manner. This research investigates a robust control strategy—Integral Sliding Mode Control (ISMC)—applied to a three-degree-of-freedom robot manipulator with external disturbances. The study consists of two stages. The first stage uses Proportional-Derivative (PD) control with dynamically calculated weight values in the absence of the external disturbances. In the second stage, ISMC is employed to address dynamic responses to disturbances. The computation work on the model is implemented in Mathematica software, and a three-joint SCARA-type robot is tested to demonstrate methodology robustness. In the end, stability is ensured through Lypunove function analysis and the sliding surface's phase portrait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Data for this study is available upon request from the corresponding author.

References

  • Abbasi, S.J., Khan, H., Lee, M.C.: Trajectory tracking control of multi-DOF robot without considering system dynamics. Int. J. Control. Autom. Syst. (2021). https://doi.org/10.1007/s12555-020-0064-y

    Article  Google Scholar 

  • Abdul-Lateef, W.E., Alothman, Y.N.I., Gitaffa, S.A.H.: An optimal motion path planning control of a robotic manipulator based on the hybrid PI-sliding mode controller. Bull. Electr. Eng. Inform. 12(2), 727–737 (2023)

    Article  Google Scholar 

  • Ajwad, S.A., Iqbal, J., Islam, R.U., Alsheikhy, A., Almeshal, A., Mehmood, A.: Optimal and robust control of multi DOF robotic manipulator: design and hardware realization. Cybern. Syst. 49(1), 77–93 (2018)

    Article  Google Scholar 

  • Al-Dujaili, A.Q., Falah, A., Humaidi, A.J., Pereira, D.A., Ibraheem, I.K.: Optimal super-twisting sliding mode control design of robot manipulator: Design and comparison study. Int. J. Adv. Rob. Syst. 17(6), 1729881420981524 (2020)

    Google Scholar 

  • Andreev, A., Peregudova, O.: Trajectory tracking control for robot manipulators using only position measurements. Int. J. Control. 92(7), 1490–1496 (2019)

    Article  MathSciNet  Google Scholar 

  • Ashagrie, A., Salau, A.O., Weldcherkos, T.: Modeling and control of a 3-DOF articulated robotic manipulator using self-tuning fuzzy sliding mode controller. Cogent Eng. 8(1), 1950105 (2021)

    Article  Google Scholar 

  • Ba, D.X.: An intelligent sliding mode controller of robotic manipulators with output constraints and high-level adaptation. Int. J. Robust Nonlinear Control 32(12), 6888–6912 (2022)

    Article  MathSciNet  Google Scholar 

  • Bai, R., Wang, H.B.: Robust optimal control for the vehicle suspension system with uncertainties. IEEE Trans. Cybern. 52(9), 9263–9273 (2021)

    Article  Google Scholar 

  • Chalak Qazani, M.R., Pedrammehr, S., Rahmani, A., Shahryari, M., Rajab, K.S.: An experimental study on motion error of hexarot parallel manipulator. Int. J. Adv. Manuf. Technol. 72, 1361–1376 (2014a)

    Article  Google Scholar 

  • Chalak Qazani, M.R., Pedrammehr, S., Nategh, M.J.: A study on motion of machine tools’ hexapod table on freeform surfaces with circular interpolation. Int. J. Adv. Manuf. Technol. 75, 1763–1771 (2014b)

    Article  Google Scholar 

  • Dai, L., Yu, Y., Zhai, D.H., Huang, T., Xia, Y.: Robust model predictive tracking control for robot manipulators with disturbances. IEEE Trans. Industr. Electron. 68(5), 4288–4297 (2020)

    Article  Google Scholar 

  • Ferreira, M.I.A., Fletcher, S.R. (eds.): The 21st century industrial robot: when tools become collaborators. Springer (2022)

  • Ghobadi, N., & Dehkordi, S. F. (2019, November). Dynamic modeling and sliding mode control of a wheeled mobile robot assuming lateral and longitudinal slip of wheels. In 2019 7th International Conference on Robotics and Mechatronics (ICRoM) (pp. 150–155). IEEE

  • Habibnejad Korayem, M., Ghobadi, N., Fathollahi Dehkordi, S.: Designing an optimal control strategy for a mobile manipulator and its application by considering the effect of uncertainties and wheel slipping. Optim. Control Appl. Methods 42(5), 1487–1511 (2021)

    Article  MathSciNet  Google Scholar 

  • Jung, S.: Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network. Int. J. Control. Autom. Syst. 16, 937–943 (2018)

    Article  Google Scholar 

  • Kelkoul, B., Boumediene, A.: Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy 214, 118871 (2021)

    Article  Google Scholar 

  • Khan, H., Abbasi, S.J., Lee, M.C.: DPSO and inverse jacobian-based real-time inverse kinematics with trajectory tracking using integral SMC for teleoperation. IEEE Access 8, 159622–159638 (2020)

    Article  Google Scholar 

  • Kim, J., Chang, K., Schwarz, B., Lee, A.S., Gadsden, S.A., Al-Shabi, M.: Dynamic model and motion control of a robotic manipulator. J. Robot. Netw. Artif. Life 4(2), 138–141 (2017)

    Article  Google Scholar 

  • Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot manipulator control: theory and practice. CRC Press (2003)

    Book  Google Scholar 

  • Li, R., Yang, L., Chen, Y., Lai, G.: Adaptive sliding mode control of robot manipulators with system failures. Mathematics 10(3), 339 (2022)

    Article  Google Scholar 

  • Liu, J., Wang, X., Liu, J., Wang, X.: Advanced sliding mode control, pp. 81–96. Springer, Berlin Heidelberg (2011)

    Book  Google Scholar 

  • Lynch, K.M., Park, F.C.: Modern robotics. Cambridge University Press (2017)

    Google Scholar 

  • Mazare, M., Taghizadeh, M.: Uncertainty estimator-based dual layer adaptive fault-tolerant control for wind turbines. Renew. Energy 188, 545–560 (2022)

    Article  Google Scholar 

  • Mazare, M., Taghizadeh, M., Ghaf-Ghanbari, P.: Pitch actuator fault-tolerant control of wind turbines based on time delay control and disturbance observer. Ocean Eng. 238, 109724 (2021a)

    Article  Google Scholar 

  • Mazare, M., Taghizadeh, M., Ghaf-Ghanbari, P.: Fault tolerant control of wind turbines with simultaneous actuator and sensor faults using adaptive time delay control. Renewable Energy 174, 86–101 (2021b)

    Article  Google Scholar 

  • Mazare, M., Asharioun, H., Davoudi, E., Mokhtari, M.: Distributed finite-time neural network observer-based consensus tracking control of heterogeneous underwater vehicles. Ocean Eng. 272, 113882 (2023a)

    Article  Google Scholar 

  • Mazare, M., Taghizadeh, M., Asharioun, H.: Attack-resilient pitch angle control for variable-speed wind turbine systems under cyber threats. Int. J. Adapt. Control Signal Process. 37(6), 1423–1439 (2023b)

    Article  MathSciNet  Google Scholar 

  • Mofid, O., Mobayen, S., Zhang, C., Esakki, B.: Desired tracking of delayed quadrotor UAV under model uncertainty and wind disturbance using adaptive super-twisting terminal sliding mode control. ISA Trans. 123, 455–471 (2022)

    Article  Google Scholar 

  • Nof, S.Y., Wilhelm, W.E., Warnecke, H.: Industrial assembly. Springer Science & Business Media, Springer, US (1997)

    Book  Google Scholar 

  • Norsahperi, N.M.H., Danapalasingam, K.A.: An improved optimal integral sliding mode control for uncertain robotic manipulators with reduced tracking error, chattering, and energy consumption. Mech. Syst. Signal Process. 142, 106747 (2020)

    Article  Google Scholar 

  • Pedrammehr, S., Qazani, M.R.C., Asadi, H., Ettefagh, M.M., Nahavandi, S.: Model-based control of axisymmetric hexarot parallel manipulators. Results Control Optim. 7, 100135 (2022)

    Article  Google Scholar 

  • Qazani, M.R.C., Pedrammehr, S., Rahmani, A., Danaei, B., Ettefagh, M.M., Rajab, A.K.S., Abdi, H.: Kinematic analysis and workspace determination of hexarot-a novel 6-DOF parallel manipulator with a rotation-symmetric arm system. Robotica 33(8), 1686–1703 (2015)

    Article  Google Scholar 

  • Qazani, M., Asadi, H., Nahavandi, S.: A new Gantry-Tau-based mechanism using spherical wrist and model predictive control-based motion cueing algorithm. Robotica 38(8), 1359–1380 (2020)

    Article  Google Scholar 

  • Qazani, M R C, Mohammadi, V; Asadi, Houshyar; Mohamed, Shady; Nahavandi, Saeid (2019). Development of gantry-tau-3R mechanism using a neuro PID controller. Deakin University. Conference contribution. https://hdl.handle.net/10536/DRO/DU:30139037

  • Shafei, H.R., Bahrami, M., Talebi, H.A.: Trajectory tracking of an uncertain wheeled mobile robotic manipulator with a hybrid control approach. J. Braz. Soc. Mech. Sci. Eng. 42, 1–26 (2020)

    Article  Google Scholar 

  • Utkin, V., Guldner, J., Shi, J.: Sliding mode control in electro-mechanical systems. CRC Press (2017)

    Book  Google Scholar 

  • Wang, F., Chao, Z.Q., Huang, L.B., Li, H.Y., Zhang, C.Q.: Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode. Clust. Comput. 22(Suppl 3), 5799–5809 (2019)

    Article  Google Scholar 

  • Waseem, M., Ali, I. (2023). Tracking error control of robotic manipulator using optimal integral sliding mode control in the presence of external disturbances. In 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1–6). IEEE

  • Xiao, B., Cao, L., Xu, S., Liu, L.: Robust tracking control of robot manipulators with actuator faults and joint velocity measurement uncertainty. IEEE/ASME Trans. Mechatron. 25(3), 1354–1365 (2020)

    Article  Google Scholar 

  • Zhang, C.: The active rotary inertia driver system for flutter vibration control of bridges and various promising applications. SCIENCE CHINA Technol. Sci. 66(2), 390–405 (2023)

    Article  Google Scholar 

  • Zhang, C., Wang, H.: Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification. Struct. Control. Health Monit. 27(6), 2543 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge that Irfan Ali, a Ph.D. scholar, has contributed to this work as part of his doctoral thesis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and original draft, IA; Writing—review and editing, MH; Review writing, ZC; Formal analysis, ZB; All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Mohsan Hassan.

Ethics declarations

Conflict of interest

It is stated that authors have no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Hassan, M., Bano, Z. et al. Robust tracking control of a three-degree-of-freedom robot manipulator with disturbances using an integral sliding mode controller. Int J Intell Robot Appl (2024). https://doi.org/10.1007/s41315-023-00312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41315-023-00312-z

Keywords

Navigation