Skip to main content
Log in

An Efficient Localization Algorithm Based on Vector Matching for Mobile Robots Using Laser Range Finders

  • Unmanned System Paper
  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes an efficient localization algorithm based on a vector-matching technique for mobile robots with laser range finders. As a reference the method uses a map with line-segment vectors, which can be built from a CAD layout of the indoor environment. The contribution of this work lies in the overall localization process. First, the proposed sequential segmentation method enables efficient vector extraction from scanned data. Second, a reliable and efficient vector-matching technique is proposed. Finally, a cost function suitable for vector-matching is proposed for nonlinear pose estimation with solutions for both nonsingular and singular cases. Simulation results show that the proposed localization method works reliably even in a noisy environment. The algorithm was implemented for our wheelchair-based mobile robot and evaluated in a 135 m long corridor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anousaki, G.C., Kyriakopoulos, K.J.: Simultaneous localization and map building for mobile robot navigation. IEEE Robot. Autom. Mag. 6(3), 42–53 (1999)

    Article  Google Scholar 

  2. Arras, K.O., Siegwart, R.: Feature extraction and scene interpretation for map-based navigation and map building. In: Proceedings of the Symposium on Intelligent Systems and Advanced Manufacturing, vol. 3210, pp. 4253–4264. Mobile Robotics XII, Pittsburgh (1997)

    Google Scholar 

  3. Arras, K.O., Castellanos, J.A., Schilt, M., Siegwart, R.: Feature-based multi-hypothesis localization and tracking using geometric constraints. Robot. Auton. Syst. 44(1), 41–53 (2003)

    Article  Google Scholar 

  4. Ayache, N., Faugeras, O.: Hyper: a new approach for the recognition and positioning of 2D objects. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 44–54 (1986)

    Google Scholar 

  5. Beveridge, J.R., Riseman, E.M.: How easy is matching 2D line models using local search? IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 564–579 (1997)

    Article  Google Scholar 

  6. Borges, G.A., Aldon, M.J.: Optimal mobile robot pose estimation using geometrical maps. IEEE Trans. Robot. Autom. 18(1), 87–94 (2002)

    Article  Google Scholar 

  7. Borges, G.A., Aldon, M.J.: Line extraction in 2D range images for mobile robotics. J Intell. Robot. Syst. 40(1), 267–297 (2004)

    Article  Google Scholar 

  8. Borges, G.A., Aldon, M.J.: Robustified estimation algorithms for mobile robot localization based on geometrical environment maps. Robot. Auton. Syst. 45(3), 131–159 (2003)

    Article  Google Scholar 

  9. Castellanos, J., Tardós, J.: Laser-based segmentation and localization for a mobile robot. In: Robotics and Manufacturing: Recent Trends in Research and Applications, vol. 6, pp. 101–108. ASME Press, New York (1996)

    Google Scholar 

  10. Cox, I.J.: Blanche – an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Trans. Robot. Autom. 7(2), 193–204 (1991)

    Article  Google Scholar 

  11. Dudek, G., Zhang, C.: Vision-based robot localization without explicit object models. In: Proceedings of International Conference on Robotics and Automation, vol. 1, pp. 76–81. IEEE, Minneapolis (1996)

    Google Scholar 

  12. Einsele, T.: Localization in indoor environments using a panoramic laser range finder. Dissertation, Technischen Universität München (2000)

  13. Elfes, A.: Sonar-based real-world mapping and navigation. Journal of Robotics and Automation 3(3), 249–265 (1987)

    Article  Google Scholar 

  14. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo localization: efficient position estimation for mobile robots. In: Proceedings of the National Conference on Artificial Intelligence, pp. 343–349. AAAI, Orlando (1999)

    Google Scholar 

  15. Haralick, R.: Propagating covariances in computer vision. In: Proceedings of the International Conference on Pattern Recognition, vol. 12, pp. 493–498. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  16. Lingemann, K., Nüchter, A., Hertzberg, J., Surmann, H.: High-speed laser localization for mobile robots. Robot. Auton. Syst. 51(4), 275–296 (2005)

    Article  Google Scholar 

  17. Sohn, H.J., Kim, B.K.: A robust localization algorithm for mobile robots with laser range finders. In: Proceedings of International Conference on Robotics and Automation, pp. 3545–3550. IEEE, Barcelona (2005)

    Google Scholar 

  18. Jensfelt, P., Kristensen, S.: Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Trans. Robot. Autom. 17(5), 748–760 (2001)

    Article  Google Scholar 

  19. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)

    Article  Google Scholar 

  20. Minguez, J., Lamiraux, F., Montesano, L.: Metric-based scan matching algorithms for mobile robot displacement estimation. In: Proceedings of International Conference on Robotics and Automation, pp. 3557–3563. IEEE, Barcelona (2005)

    Google Scholar 

  21. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence, vol. 18, pp. 593–598. AAAI, Orlando (2003)

    Google Scholar 

  22. Mota, J.G., Ribeiro, M.I.: Mobile robot localisation on reconstructed 3D models. J. Robot. Auton. Syst. 31(1), 11–30 (2000)

    Google Scholar 

  23. Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, vol. 2005, pp. 1929–1934. IEEE, Alberta (2005)

    Google Scholar 

  24. Pavlidis, T., Horowitz, S.: Segmentation of plane curves. IEEE Trans. Comput. 23, 860–870 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pfister, S., Roumeliotis, S., Burdick, J.: Weighted line fitting algorithms for mobile robot map building and efficient data representation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1304–1311. IEEE, Taipei (2003)

    Google Scholar 

  26. Pfister, S.: Algorithms for mobile robot localization and mapping, incorporating detailed noise modeling and multi-scale feature extraction. Dissertation, California Institute of Technology (2006)

  27. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the 3rd International Conference on 3D Digital Imaging and Modeling, pp. 145–152. IEEE, Quebec (2001)

    Chapter  Google Scholar 

  28. Siegwart, R., Nourbakhsh, I.: Introduction to Autonomous Mobile Robots. MIT Press, Cambridge (2004)

    Google Scholar 

  29. Weber, J., Jörg, K.W., Puttkamer, E.: APR-Global scan matching using anchor point relationships. In: Proceedings of the 6th International Conference on Intelligent Autonomous Systems, pp. 471–478. IOS press, Venice (2000)

    Google Scholar 

  30. Weiß, G., Wetzler, C., Puttkamer, E.: Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans. In: Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, vol. 1, pp. 595–601. IEEE, Munich (1994)

    Google Scholar 

  31. Zezhong, X., Ronghua, L., Jilin, L.: Global localization based on corner point. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, vol. 2, pp. 843–847. IEEE, Kobe (2003)

    Chapter  Google Scholar 

  32. Zhang, L., Ghosh, B.K.: Line segment based map building and localization using 2D laser rangefinder. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 2538–2543. IEEE, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jin Sohn.

Additional information

Categories (3), (6).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, H.J., Kim, B.K. An Efficient Localization Algorithm Based on Vector Matching for Mobile Robots Using Laser Range Finders. J Intell Robot Syst 51, 461–488 (2008). https://doi.org/10.1007/s10846-007-9194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9194-1

Keywords

Navigation