Skip to main content

Advertisement

Log in

Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm)

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The present paper focuses on machining (turning) aspects of CFRP (epoxy) composites by using single point HSS cutting tool. The optimal setting i.e. the most favourable combination of process parameters (such as spindle speed, feed rate, depth of cut and fibre orientation angle) has been derived in view of multiple and conflicting requirements of machining performance yields viz. material removal rate, surface roughness, SR \((\hbox {R}_{\mathrm{a}})\) (of the turned product) and cutting force. This study initially derives mathematical models (objective functions) by using statistics of nonlinear regression for correlating various process parameters with respect to the output responses. In the next phase, the study utilizes a recently developed advanced optimization algorithm teaching–learning based optimization (TLBO) in order to determine the optimal machining condition for achieving satisfactory machining performances. Application potential of TLBO algorithm has been compared to that of genetic algorithm (GA). It has been observed that exploration of TLBO appears more fruitful in contrast to GA in the context of this case experimental research focused on machining of CFRP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\hbox {X}_{1}\) :

Spindle speed

\(\hbox {X}_{2}\) :

Feed rate

\(\hbox {X}_{3}\) :

Depth of cut

\(\hbox {X}_{4}\) :

Orientation of fiber

\(\hbox {F}_{\mathrm{x}}\) :

Feed force

\(\hbox {F}_{\mathrm{y}}\) :

Tangential force

\(\hbox {F}_{\mathrm{z}}\) :

Longitudinal force

\(\hbox {Z}_{1}\) :

Mathematical equation for cutting force

\(\hbox {Z}_{2}\) :

Mathematical equation for surface roughness

\(\hbox {Z}_{3}\) :

Mathematical equation for material removal rate (MRR)

Z:

Mathematical equation for multi objective

CF:

Cutting force

SR:

Surface roughness

MRR:

Material removal rate

TLBO:

Teaching–learning based optimization

ABC:

Artificial bee colony

ACO:

Ant colony optimization

PSO:

Particle swarm optimization

SA:

Simulated annealing

GA:

Genetic algorithm

References

  • Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001–1014.

    Article  Google Scholar 

  • Bachlaus, M., Pandey, M. K., Mahajan, C., Shankar, R., & Tiwari, M. K. (2008). Designing an integrated multi-echelon agile supply chain network: A hybrid Taguchi-particle swarm optimization approach. Journal of Intelligent Manufacturing, 19(6), 747–761.

    Article  Google Scholar 

  • Bagci, E., & Işık, B. (2006). Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN. International Journal of Advance Manufacturing Technology, 31, 10–17.

    Article  Google Scholar 

  • Bharathi, R. S., & Baskar, N. (2011). Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. International Journal of Advanced Manufacturing Technology, 54(5–8), 445–463.

  • Chatterjee, S., Abhishek, K., Yadav, R. K., & Mahapatra, S. (2014). Optimization of drilling process parameters by harmony search algorithm. In Recent advances and innovations in engineering (ICRAIE), IEEE (pp. 1–5).

  • Chaube, A., Benyoucef, L., & Tiwari, M. K. (2012). An adapted NSGA-2 algorithm based dynamic process plan generation for a reconfigurable manufacturing system. Journal of Intelligent Manufacturing, 23(4), 1141–1155.

    Article  Google Scholar 

  • Chen, H., Lin, J., Yang, Y., & Tsai, C. (2010). Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert System Application, 37(10), 7147–7153.

    Article  Google Scholar 

  • Crepinsek, M., & Liu, S.-H. (2012). A note on teaching–learning-based optimization algorithm. Information Sciences, 212, 79–93.

    Article  Google Scholar 

  • Cus, F., Balic, J., & Zu Perl, U. (2009). Hybrid ANFIS-ants system based optimization of turning parameters. Journal of Achievements in Materials and Manufacturing Engineering, 36(1), 79–86.

    Google Scholar 

  • Duran, O., Rodriguez, R., & Consalter, L. A. (2008). PSO for selecting cutting tools geometry. In Lecture notes in computer science (Vol. 5271, pp. 265–272).

  • Farahnakian, M., Razfar, M. R., Moghri, M., & Asadnia, M. (2011). The selection of milling parameters by the PSO-based neural network modeling method. International Journal of Advanced Manufacturing Technology, 57(1–4), 49–60.

    Article  Google Scholar 

  • Ferreira, J. R., Coppini, N. L., & Neto, F. L. (2001). Characteristics of carbon–carbon composite turning. Journal of Materials Processing Technology, 109, 65–71.

    Article  Google Scholar 

  • Gaitonde, V. N., & Karnik, S. R. (2012). Minimizing burr size in drilling using artificial neural network (ANN)–particle swarm optimization (PSO) approach. Journal of Intelligent Manufacturing, 23(5), 1783–1793.

    Article  Google Scholar 

  • Gao, Q., Zhang, Q., Su, S., & Zhang, J. (2008). Parameter optimization model in electrical discharge machining process. Journal of Zhejiang University Science A, 9(1), 104–108.

    Article  Google Scholar 

  • Gonzalez-Alvarez, D. L., Vega-Rodríguez, M. A., Gomez-Pulido, J. A., & Sánchez-Pérez, J. M. (2012). Multiobjective teaching–learning-based optimization (MO-TLBO) for Motif finding. In 13th IEEE international symposium on computational intelligence and informatics, Budapest, Hungary.

  • Gupta, M., & Gill, S. K. (2012). Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing. Frontiers of Mechanical Engineering, 7(4), 417–426.

    Article  Google Scholar 

  • Jain, N. K., & Jain, V. K. (2007). Optimization of electro-chemical machining process parameters using genetic algorithms. Machining Science and Technology, 11(2), 235–258.

    Article  Google Scholar 

  • Jayabal, S., & Natarajan, U. (2010). Optimization of thrust force, torque, and tool wear in drilling of coir fiber-reinforced composites using nelder-mead and genetic algorithm methods. International Journal of Advanced Manufacturing Technology, 51(1–4), 371–381.

    Article  Google Scholar 

  • Kadirgama, K., Noor, M. M., & Alla, A. N. A. (2010). Response ant colony optimization of end milling surface roughness. Sensors, 10, 2054–2063.

    Article  Google Scholar 

  • Khan, M. Adam, Senthil Kumar, A., & Poomari, A. (2012). A hybrid algorithm to optimize cutting parameter for machining GFRP composite using alumina cutting tools. International Journal of Advance Manufacturing Technology, 59, 1047–1056.

    Article  Google Scholar 

  • Kilickap, E., Huseyinoglu, M., & Yardimeden, A. (2011). Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. International Journal of Advanced Manufacturing Technology, 52(1–4), 79–88.

    Article  Google Scholar 

  • Kim, K. S., Lee, D. G., & Kwak, Y. K. (1990). Cutting (milling) characteristics of carbon fiber/epoxy composites. Transactions of the Korean Society of Mechanical Engineers, 14(1), 237–42.

    Google Scholar 

  • Kim, K. S., Lee, D. G., Kwak, Y. K., & Namgung, S. (1992). Machinability of carbon fiber-epoxy composite materials in turning. Journal of Materials Processing Technology, 32, 553–570.

    Article  Google Scholar 

  • Kolahan, F., & Khajavi, A. H. (2009). A statistical approach for predicting and optimizing depth of cut in AWJ machining for 6063-T6 Al alloy. Proceedings of World Academy of Science, Engineering and Technology, 59, 142–145.

    Google Scholar 

  • Koplev, A. (1980). Cutting of CFRP with single edge tools. In Proceeding of third international conference on composite materials, Paris (pp. 1597–1605).

  • Krishnasamy, U., & Nanjundappan, D. (2014). A refined teaching–learning based optimization algorithm for dynamic economic dispatch of integrated multiple fuel and wind power plants. Mathematical Problems in Engineering. doi:10.1155/2014/956405

  • Kumar, A., Bharaneeswaran, P., & Annamalai, R. (2012a). Experimental investigation of K20 carbide and PCD insert on machining GFRP composite. International Conference on Industrial and Intelligent Information, 31, 149–155.

    Google Scholar 

  • Kumar, S., Gupta, M., Satsangi, P. S., & Sardana, H. K. (2012b). Cutting forces optimization in the turning of UD-GFRP composites under different cutting environment with polycrystalline diamond tool. International Journal of Engineering, Science and Technology, 4(2), 106–121.

    Google Scholar 

  • Kumar, S., Meenu, & Satsangi, P. S. (2013). Multiple performance optimization in machining of UD-GFRP composites by a PCDtool using distance-based pareto genetic algorithm (DPGA). Mechanica Confab, 2(2), 49–66.

  • Kumar, V. V., Pandey, M. K., Tiwari, M. K., & Ben-Arieh, D. (2010). Simultaneous optimization of parts and operations sequences in SSMS: A chaos embedded Taguchi particle swarm optimization approach. Journal of Intelligent Manufacturing, 21(4), 335–353.

  • Lee, D. G., Kim, K. S., & Kwak, Y. K. (1991). Manufacturing of a SCARA type direct-drive robot with graphite fiber epoxy composite material. Robotica, 9, 219–229.

    Article  Google Scholar 

  • Lee, D. G., Sin, H. C., & Suh, N. P. (1985). Manufacturing of a graphite epoxy composite spindle for a machine tool. CIRP Annals-Manufacturing Technology, 34(1), 365–369.

    Article  Google Scholar 

  • Li, J. G., Yao, Y. X., Gao, D., Liu, C. Q., & Yuan, Z. J. (2008). Cutting parameters optimization by using particle swarm optimization (PSO). Applied Mechanics and Materials, 10–12, 879–883.

    Article  Google Scholar 

  • Li, M. J., Soo, S. L., Aspinwall, D. K., Pearson, D., & Leahy, W. (2014). Influence of lay-up configuration and feed rate on surface integrity when drilling carbon fibre reinforced plastic (CFRP) composites. Procedia CIRP, 13, 399–404.

    Article  Google Scholar 

  • Lin, L., Hao, X.-C., Gen, M., & Jo, J.-B. (2012). Network modeling and evolutionary optimization for scheduling in manufacturing. Journal of Intelligent Manufacturing, 23(6), 2237–2253.

    Article  Google Scholar 

  • Lubin, G. (1982). Handbook of composites (pp. 625–629). New York: Van Nostrand Reinhold.

    Book  Google Scholar 

  • Mahapatra, S. S., & Patnaik, A. (2007). Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. International Journal of Advanced Manufacturing Technology, 34(9–10), 911–925.

    Article  Google Scholar 

  • Maji, K., & Pratihar, D. K. (2010). Modeling of electrical discharge machining process using conventional regression analysis and genetic algorithms. Journal of Materials Engineering and Performance, 20(7), 1121–1127.

    Article  Google Scholar 

  • Mallick, P. K. (1988). Fiber-reinforced composites (pp. 3–4). New York: Dekker.

    Google Scholar 

  • Mandal, D., Pal, S. K., & Saha, P. (2007). Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. Journal of Materials Processing Technology, 186(1–3), 154–162.

    Article  Google Scholar 

  • Meenu, & Kumar, S. (2013). Prediction of surface roughness in turning of UDGFRP using mathematical model and simulated annealing. International Journal of Advances in Engineering and Technology, 4(2), 81–85.

  • Palanikumar, K., & Davim, J. P. (2007). Mathematical model to predict tool wear on the machining of glass fibre reinforced plastic composites. Materials & Design, 28, 2008–2014.

    Article  Google Scholar 

  • Palanikumar, K., Karunamoorthy, L., Karthikeyan, R., & Latha, B. (2006). Optimization of machining parameters in turning GFRP composites using a carbide (K10) tool based on the Taguchi method with fuzzy logics. Metals and materials International, 12, 483–491.

    Article  Google Scholar 

  • Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.

    Article  Google Scholar 

  • Palanisamy, P., Rajendran, I., & Shanmugasundaram, S. (2007). Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. International Journal of Advanced Manufacturing Technology, 32(7–8), 644–655.

    Article  Google Scholar 

  • Parent, L., Songmene, V., & Kenne, J. (2007). A generalised model for optimising an end milling operation. Production Planning and Control, 18(4), 319–337.

    Article  Google Scholar 

  • Patel, V. K., & Savsani, V. J. (2014a). Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching–learning based optimization (MO-ITLBO) algorithm. Chemical Engineering Research and Design, 92, 2371–2382.

    Article  Google Scholar 

  • Patel, V. K., & Savsani, V. J. (2014b). A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Information Sciences. doi:10.1016/j.ins.2014.05.049

  • Pecat, O., Rentsch, R., & Brinksmeier, E. (2012). Influence of milling process parameters on the surface integrity of CFRP. In 5th CIRP conference on high performance cutting (pp. 466–470).

  • Prasad, C. F., Jayabal, S., & Natarajan, U. (2007). Optimization of tool wear in turning using genetic algorithm. Indian Journal of Engineering and Materials Sciences, 14(6), 403–407.

    Google Scholar 

  • Rajasekaran, T., Palanikumar, K., & Vinayagam, B. K. (2011). Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool. Production Engineering Research and Development, 5, 191–199.

    Article  Google Scholar 

  • Rajasekaran, T., Palanikumar, K., & Vinayagam, B. K. (2012). Turning CFRP composites with ceramic tool for surface roughness analysis. Procedia Engineering, 38, 2922–2929.

    Article  Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2011). Parameters optimization of advanced machining processes using TLBO algorithm. Singapore: EPPM.

    Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2013a). Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm. Scientia Iranica E, 20(3), 967–974.

    Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2013b). Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26(1), 524–531.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2012). An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3, 535–560.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2013a). An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica D, 20(3), 710–720.

    Google Scholar 

  • Rao, R. V., & Patel, V. (2013b). Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems. International Journal of Industrial Engineering Computations, 4, 29–50.

  • Rao, R. V., Pawar, P. J., & Shankar, R. (2008). Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(8), 949–958.

    Article  Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer Aided Design, 43, 303–315.

    Article  Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2012a). Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems. Information Sciences, 183, 1–15.

    Article  Google Scholar 

  • Rao, R. V., Savsani, V. J., & Balic, J. (2012b). Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Engineering Optimization, 44(12), 1447–1462.

  • Rao, R. V., & Waghmare, G. G. (2013). Solving composite test functions using teaching–learning-based optimization algorithm. In Proceedings of the international conference on Frontiers of intelligent computing: Theory and applications (FICTA) advances in intelligent systems and computing (Vol. 199, pp. 395–403).

  • Rao, R. V., & Waghmare, G. G. (2014a). A comparative study of a teaching–learning-based optimization algorithm on multi-objective unconstrained and constrained functions. Journal of King Saud University—Computer and Information Sciences, 26, 332–346.

    Article  Google Scholar 

  • Rao, R. V., & Waghmare, G. G. (2014b). Complex constrained design optimisation using an elitist teaching–learning-based optimisation algorithm. International Journal of Metaheuristics, 3(1), 81–102.

    Article  Google Scholar 

  • Reugg, C., & Habermeir, J. (1980). Composite propeller shafts design and optimization. In A. Bunsell, et al. (Eds.), Advances in composite material (Proceedings of ICCM 3) (Vol. 2, pp. 1740–1755). Paris: Pergamon Press.

    Chapter  Google Scholar 

  • Sait, A. N. (2010). Optimization of machining parameters of GFRP pipes using evolutionary techniques. International Journal of Precision Engineering and Manufacturing, 11(6), 891–900.

    Article  Google Scholar 

  • Sait, A. N., Aravindan, S., & Haq, A. N. (2009). Optimisation of machining parameters of glass-fibre-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique. International Journal of Advance Manufacturing Technology, 43, 581–589.

    Article  Google Scholar 

  • Santhanakrishnam, G., Krishnamurthy, R., & Malhotra, S. K. (1988). Machinability characteristics of fiber reinforced plastics composites. Journal of Mechanical Working Technology, 17, 195–204.

  • Satapathy, S. C., & Naik, A. (2011). Data clustering based on teaching–learning-based optimization. In Evolutionary and memetic computing lecture notes in computer science, (Vol. 7077, pp. 148–156).

  • Satapathy, S. C., Naik, A., & Parvathi, K. (2013a). A teaching learning based optimization based on orthogonal design for solving global optimization problems. Springer Plus, 2(130), 1–12.

    Google Scholar 

  • Satapathy, S. C., Naik, A., & Parvathi, K. (2013b). Weighted teaching–learning-based optimization for global function optimization. Applied Mathematics, 4, 429–439.

    Article  Google Scholar 

  • Satishkumar, S., & Asokan, P. (2008). Selection of optimal conditions for CNC multitool drilling system using non-traditional techniques. International Journal of Machining and Machinability of Materials, 3(1–2), 190–207.

    Article  Google Scholar 

  • Schwartz, M. M. (1984). Composite materials handbook, Ch. 7 (p. 7). New York: McGraw-Hill.

  • Thirumalai, R., & Senthilkumaar, J. S. (2013). Multi-criteria decision making in the selection of machining parameters for Inconel 718. Journal of Mechanical Science and Technology, 27(4), 1109–1116.

    Article  Google Scholar 

  • Vahdani, B., Tavakkoli-Moghaddam, R., Zandieh, M., & Razmi, J. (2012). Vehicle routing scheduling using an enhanced hybrid optimization approach. Journal of Intelligent Manufacturing, 23(3), 759–774.

    Article  Google Scholar 

  • Verma, R. K., Abhishek, K., Datta, S., & Mahaptra, S. S. (2011). Fuzzy rule based optimization in machining of FRP composites. Turkish Journal of Fuzzy Systems, 2(2), 99–121.

    Google Scholar 

  • Vijayakumar, K., Prabhaharan, G., Asokan, P., & Saravanan, R. (2003). Optimization of multi-pass turning operations using ant colony system. International Journal of Machine Tools and Manufacture, 43(15), 1633–1639.

    Article  Google Scholar 

  • Xi, J., & Liao, G. (2009). Cutting parameter optimization based on particle swarm optimization. In 2nd International conference on intelligent computing technology and automation, ICICTA 2009 (Vol. 1, pp. 255–258).

  • Xu, F., Zhu, J. J., Wu, X., Zang, X. J., & Zuo, D. W. (2010). Parameter optimization of milling Ti6Al4V using GA approach. Key Engineering Materials, 426–427, 1–4.

    Article  Google Scholar 

  • Yang, S., Srinivas, J., Mohan, S., Lee, D.-M., & Balaji, S. (2009). Optimization of electric discharge machining using simulated annealing. Journal of Materials Processing Technology, 209(9), 4471–4475.

    Article  Google Scholar 

  • Yang, X. S. (2009). Harmony search as a metaheuristic algorithm. In Z. W. Geem (Ed.), Music inspired harmony search algorithm: Theory and applications, studies in computational intelligence (Vol. 191, pp. 1–14). Berlin: Springer.

    Chapter  Google Scholar 

  • Zain, A. M., Haron, H., & Sharif, S. (2010). Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti–6Al–4V. Machining Science and Technology, 14, 43–62.

    Article  Google Scholar 

  • Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2013). Multi-objective optimization using teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26(4), 1291–1300.

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by a Sponsored Project (SERB, DST, Govt. of India). [Sanction Ref. No.: SR/FTP/ETA-0140/2011 Dated 21 November 2011]. The authors sincerely express their heartiest thanks to the Chief Editor, Journal of Intelligent Manufacturing, and the anonymous reviewers for their valuable comments and suggestions to make the paper a good contributor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Appendix

Appendix

See Fig. 12.

Fig. 12
figure 12

Determination of cutting forces using turning tool dynamometer (for sample no. 20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhishek, K., Rakesh Kumar, V., Datta, S. et al. Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm). J Intell Manuf 28, 1769–1785 (2017). https://doi.org/10.1007/s10845-015-1050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1050-8

Keywords

Navigation