Skip to main content
Log in

Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The burrs at the hole exit degrade the performance in precision part and affect the reliability of the product. Hence, it is essential to select the optimal process parameters for minimal burr size at the manufacturing stage so as to reduce the deburring cost and time. This paper illustrates the application of particle swarm optimization (PSO) to select the best combination values of feed and point angle for a specified drill diameter in order to simultaneously minimize burr height and burr thickness during drilling of AISI 316L stainless steel. The burr size models required for the PSO optimization were developed using artificial neural network (ANN) with the drilling experiments planned as per full factorial design (FFD). The PSO optimization results clearly indicate the importance of larger point angle for bigger drill diameter values in controlling the burr size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Davim J. P., Gaitonde V. N., Karnik S. R. (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. Journal of Materials Processing Technology 205(1–3): 16–23

    Article  Google Scholar 

  • Dornfeld D. A., Kim J., Dechow H., Hewson J., Chen I. J. (1999) Drilling burr formation in titanium alloy, Ti-6Al-4V. Annals of CIRP 52(1): 45–48

    Google Scholar 

  • Elbeltagi E., Hegazy T., Grierson D. (2005) Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Information 19(1): 43–53

    Article  Google Scholar 

  • Fausett L. (1994) Fundamentals of neural networks: Architectures, algorithms and applications. Prentice-Hall, NY

    Google Scholar 

  • Gaitonde, V. N., Karnik, S. R., Achyutha, B. T., & Siddeswarappa, B. (2007a). Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size. International Journal of Advanced Manufacturing Technology, 34 1–8.

    Google Scholar 

  • Gaitonde V.N., Karnik S.R. (2007b) Taguchi robust design for multi-response drilling optimization to minimize burr size using utility concept. International Journal of Manufacturing Research 2(2): 209–224

    Article  Google Scholar 

  • Gaitonde V. N., Karnik S. R., Achyutha B. T, Siddeswarappa B. (2008) Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function. Journal of Materials Processing Technology 202: 374–379

    Article  Google Scholar 

  • Gaitonde V. N., Karnik S. R., Achyutha B. T., Siddeswarappa B., Davim J. P. (2009) Predicting burr size in drilling of AISI 316L stainless steel using response surface analysis. International Journal of Materials and Product Technology 35(1–2): 228–245

    Article  Google Scholar 

  • Gaitonde V. N., Karnik S. R., Davim J. P. (2010) Study of the effects of MQL and cutting conditions in turning of brass using artificial neural network. International Journal of Materials and Product Technology 37(1–2): 155–172

    Article  Google Scholar 

  • Gillespie L. K. (1975) The $2 billion deburring bill. Manufacturing Engineering Management 74: 20–21

    Google Scholar 

  • Gillespie L. K. (1979) Deburring precision miniature parts. Precision Engineering 1(4): 189–198

    Article  Google Scholar 

  • Gillespie, L. K. (1996). Standard terminology for researchers of burrs and edge finishing. WBTC STD-02.

  • Gillespie L. K., Blotter P. T. (1976) The formation properties of machining burrs. ASME Journal of Engineering for Industry 98(1): 66–74

    Article  Google Scholar 

  • Guo Y. B., Dornfeld D. A. (2000) Finite element modeling of drilling burr formation process in drilling 304 stainless steel. ASME Journal of Manufacturing Science and Engineering 122(4): 612–619

    Article  Google Scholar 

  • Hunag M. F. (2004) Application of grey-Taguchi method to optimize drilling of aluminum alloy 6061 with multiple performance characteristics. Materials Science and Technology 20: 528–532

    Article  Google Scholar 

  • Karnik S. R., Gaitonde V. N. (2008) Development of artificial neural network models to study the effect of process parameters on burr size in drilling. International Journal of Advanced Manufacturing Technology 39: 439–453

    Article  Google Scholar 

  • Karnik S. R., Gaitonde V. N., Mata F., Davim J. P. (2008a) Investigative study on machinability aspects of unreinforced and reinforced PEEK composite machining using ANN model. Journal of Reinforced Plastics and Composites 27(7): 751–768

    Article  Google Scholar 

  • Karnik S. R., Gaitonde V. N., Rubio J. C., Correia A. E., Abrao A. M., Davim J. P. (2008b) Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Materials and Design 29(9): 1768–1776

    Article  Google Scholar 

  • Karnik S. R., Gaitonde V. N., Davim J. P. (2008c) A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling. International Journal of Advanced Manufacturing Technology 38: 868–883

    Article  Google Scholar 

  • Kennedy, J., & Eberhart R. C. (1995). Particle Swarm Optimization. In Proceedings of IEEE international conference on neural networks (pp. 1942–1948). Perth, Western Australia: University of Western Australia.

  • Kim J., Dornfeld D. A. (2000) Development of a drilling burr control chart for low alloy steel, AISI 4118. Journal of Materials Processing Technology 113: 4–9

    Google Scholar 

  • Kim J., Min S., Dornfeld D. A. (2001) Optimization and control of drilling burr formation of AISI 304L and AISI 4118 based on drilling burr control charts. International Journal of Machine Tools and Manufacture 41: 923–936

    Article  Google Scholar 

  • Ko S. L., Lee J. (2001) Analysis on burr formation in drilling with new concept drill. Journal of Materials Processing Technology 113: 392–398

    Article  Google Scholar 

  • Koelsch, J. (2001). Divining edge quality by reading the burrs. Quality Magazine, pp. 24–28.

  • Lauderbaugh L. K. (2009) Analysis of the effects of process parameters on exit burrs in drilling using a combined simulation and experimental approach. Journal of Materials Processing Technology 209: 1909–1919

    Article  Google Scholar 

  • Lin R. (2002) Cutting behavior of a TiN-coated carbide drill with curved cutting edges during the high speed machining of stainless steel. Journal of Materials Processing Technology 127: 8–16

    Article  Google Scholar 

  • Math Works Incorporation. (2005). MATLAB User Manual, Version 7.1, R 14, Natick, MA.

  • Min S., Dornfeld D. A., Kim J., Shyu B. (2001a) Finite element modeling of burr formation in metal cutting. Machining Science and Technology 5(2): 307–322

    Article  Google Scholar 

  • Min S., Kim J., Dornfeld D. A. (2001b) Development of a drilling burr control chart for stainless steel. Transactions of NAMRI/SME 28: 317–322

    Google Scholar 

  • Montgomery D. C. (2003) Design and analysis of experiments. Wiley, NY

    Google Scholar 

  • Pande S. S., Relekar H. P. (1986) Investigations on reducing burr formation in drilling. International Journal of Machine Tool Design Research 26: 339–348

    Article  Google Scholar 

  • Parsopoulos K. E., Vrahatis M. N. (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computing 8(3): 211–224

    Article  Google Scholar 

  • Phadke M. S. (1989) Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Saunders L. K. L. (2003) A finite element modeling of exit burrs for drilling of metal. Finite Element in Analysis and Design 40(2): 139–158

    Article  Google Scholar 

  • Schalkoff R. B. (1997) Artificial neural networks. McGraw-Hill International Edition, NY

    Google Scholar 

  • Stein J. M., Dornfeld D. A. (1997) Burr formation in drilling miniature holes. Annals of CIRP 46(1): 63–66

    Article  Google Scholar 

  • Tosun N. (2006) Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. International Journal of Advanced Manufacturing Technology 28: 450–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Gaitonde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaitonde, V.N., Karnik, S.R. Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach. J Intell Manuf 23, 1783–1793 (2012). https://doi.org/10.1007/s10845-010-0481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0481-5

Keywords

Navigation