Skip to main content
Log in

Swarm lexicographic goal programming for fuzzy open shop scheduling

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this work we consider a multiobjective open shop scheduling problem with uncertain processing times and flexible due dates, both modelled using fuzzy sets. We adopt a goal programming model based on lexicographic multiobjective optimisation of both makespan and due-date satisfaction and propose a particle swarm algorithm to solve the resulting problem. We present experimental results which show that this multiobjective approach achieves as good results as single-objective algorithms for the objective with the highest priority, while greatly improving on the second objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcaide, D., Rodriguez-Gonzalez, A., & Sicilia, J. (2006). A heuristic approach to minimize expected makespan in open shops subject to stochastic processing times and failures. International Journal of Flexible Manufacturing Systems, 17, 201–226.

    Article  MATH  Google Scholar 

  • Andresen, M., Bräsel, H., Mörig, M., Tusch, J., Werner, F., & Willenius, P. (2008). Simulated annealing and genetic algorithms for minimizing mean flow time in an open shop. Mathematical and Computer Modelling, 48, 1279–1293.

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), 141–164.

    Article  MathSciNet  Google Scholar 

  • Belmecheri, F., Prins, C., & Yalaoui, F. L. A. (2013). Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4), 775–789.

    Article  Google Scholar 

  • Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.

    Article  Google Scholar 

  • Bouveret, S., & Lemaître, M. (2009). Computing leximin-optimal solutions in constraint networks. Artificial Intelligence, 173, 343–364.

    Google Scholar 

  • Brucker, P., Hunrink, J., Jurisch, B., & Wöstmann, B. (1997). A branch & bound algorithm for the open-shop problem. Discrete Applied Mathematics, 76, 43–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Celano, G., Costa, A., & Fichera, S. (2003). An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11, 655–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S. M., & Chang, T. H. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 31(6), 930–937.

    Article  CAS  Google Scholar 

  • Coshall, J. T., & Charlesworth, R. (2011). A management orientated approach to combination forecasting of tourism demand. Tourism Management, 32, 759–769.

    Article  Google Scholar 

  • Diaz-Balteiro, L., & Romero, C. (2008). Making forestry decisions with multiple criteria: A review and an assessment. Forest Ecology and Management, 255, 3222–3241.

    Article  Google Scholar 

  • Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184, 3–28.

    Google Scholar 

  • Dubois, D., & Prade, H. (1986). Possibility theory: An approach to computerized processing of uncertainty. New York, NY, USA: Plenum Press.

    Google Scholar 

  • Dubois, D., Fargier, H., & Prade, H. (1995). Fuzzy constraints in job-shop scheduling. Journal of Intelligent Manufacturing, 6, 215–234.

    Google Scholar 

  • Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147, 231–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22, 425–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34, 1689–1709.

    Article  MathSciNet  MATH  Google Scholar 

  • Fortemps, P. (1997). Jobshop scheduling with imprecise durations: A fuzzy approach. IEEE Transactions of Fuzzy Systems, 7, 557–569.

    Article  Google Scholar 

  • Giffler, B., & Thompson, G. L. (1960). Algorithms for solving production scheduling problems. Operations Research, 8, 487–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonçalves, J., Magalhaes Mendes, J. J., & Resende, M. G. C. (2005). A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research, 167, 77–95.

    Google Scholar 

  • González Rodríguez, I., Puente, J., Vela, C. R., & Varela, R. (2008). Semantics of schedules for the fuzzy job shop problem. IEEE Transactions on Systems, Man and Cybernetics, Part A, 38(3), 655–666.

    Article  Google Scholar 

  • González-Rodríguez, I., Palacios, J.J., Vela, C.R., & Puente, J. (2010). Heuristic local search for fuzzy open shop scheduling. In: Proceedings IEEE international conference on fuzzy systems, FUZZ-IEEE2010 (pp. 1858–1865). IEEE.

  • González Rodríguez, I., Vela, C. R., & Puente, J. (2010). A genetic solution based on lexicographical goal programming for a multiobjective job shop with uncertainty. Journal of Intelligent Manufacturing, 21, 65–73.

    Article  Google Scholar 

  • Graham, R., Lawler, E., & Lenstra, J. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 4, 287–326.

    Article  MathSciNet  Google Scholar 

  • Guéret, C., & Prins, C. (1998). Classical and new heuristics for the open-shop problem: A computational evaluation. European Journal of Operational Research, 107, 306–314.

    Article  MATH  Google Scholar 

  • Guiffrida, A. L., & Nagi, R. (1998). Fuzzy set theory applications in production management research: A literature survey. Journal of Intelligent Manufacturing, 9, 39–56.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165, 289–306.

    Article  MATH  Google Scholar 

  • Hu, X., Eberhart, R.C., & Shi, Y. (2003). Swarm intelligence for permutation optimization: A case study of n-queens problem. In: Swarm intelligence symposium, 2003. SIS’03. Proceedings of the 2003 IEEE (pp. 243–246). IEEE.

  • Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained project scheduling problem. International Journal of Advanced Manufacturing Technology , 67(9–12), 2627–2638.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE international conference on neural networks (pp. 1942–1948). New Jersey: IEEE Press.

    Google Scholar 

  • Kim, B. I., & Son, S. J. (2012). A probability matrix based particle swarm optimization for the capacitated vehicle routing problem. Journal of Intelligent Manufacturing, 23, 1119–1126.

    Article  Google Scholar 

  • Lei, D. (2008). Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. International Journal of Advanced Manufacturing Technology, 37, 157–165.

    Article  Google Scholar 

  • Liaw, C. F. (1999). A tabu search algorithm for the open shop scheduling problem. Computers and Operations Research, 26, 109–126.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Liaw, C. F. (2000). A hybrid genetic algorithm for the open shop scheduling problem. European Journal of Operational Research, 124, 28–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Liberatore, F., Ortuño, M.T., Tirado, G., Vitoriano, B., & Scaparra, M. P. (2014). A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in humanitarian logistics. Computers & Operations Research, 42, 3–13.

    Google Scholar 

  • Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10, 445–450.

    Article  Google Scholar 

  • Marinakis, Y., & Marinaki, M. (2013). Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Computing, 17(7), 1159–1173.

    Article  Google Scholar 

  • Naderi, B., Fatemi Ghomi, S. M. T., Aminnayeri, M., & Zandieh, M. (2011). A study on open shop scheduling to minimise total tardiness. International Journal of Production Research, 49(15), 4657–4678.

  • Niu, Q., Jiao, B., & Gu, X. (2008). Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time. Applied Mathematics and Computation, 205, 148–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Noori-Darvish, S., Mahdavi, I., & Mahdavi-Amiri, N. (2012). A bi-objective possibilistic programming model for open shop scheduling problems with sequence-dependent setup times, fuzzy processing times, and fuzzy due-dates. Applied Soft Computing, 12, 1399–1416.

    Article  Google Scholar 

  • Palacios, J.J., González-Rodríguez, I., Vela, C.R., & Puente, J. (2011). Particle swarm optimisation for open shop problems with fuzzy durations. In: Proceedings of IWINAC 2011, Part I, Springer, Lecture Notes in Computer Science (Vol. 6686, pp. 362–371).

  • Panahi, H., Rabbani, M., & Tavakkoli-Moghaddam, R. (2008). Solving an open shop scheduling problem by a novel hybrid multi-objective ant colony optimization. In: Eighth international conference on hybrid intelligent systems (pp. 320–325). IEEE.

  • Pasandideh, S. H. R., Niaki, S. T. A., & Hajipour, V. (2013). A multi-objective facility location model with batch arrivals: two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing, 24(2), 331–348.

    Google Scholar 

  • Petrovic, S., Fayad, S., & Petrovic, D. (2008). Sensitivity analysis of a fuzzy multiobjective scheduling problem. International Journal of Production Research, 46(12), 3327–3344.

    Article  MATH  Google Scholar 

  • Pinedo, M. L. (2008). Scheduling, theory, algorithms, and systems (3rd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Prins, C. (2000). Competitive genetic algorithms for the open-shop scheduling problem. Mathematical Methods of Operations Research, 52, 389–411.

    Article  MathSciNet  MATH  Google Scholar 

  • Puente, J., Vela, C. R., & González-Rodríguez, I. (2010). Fast local search for fuzzy job shop scheduling. In: Proceedings of ECAI 2010 (pp. 739–744). IOS Press.

  • Puente, J., Vela, C. R., González-Rodríguez, I., Rodríguez, L. J., & Palacios, J. J. (2013). GRASPing examination board assignments for university-entrance exams. In: IEA-AIE 2013, Proceedings of, Springer, Lecture notes in computer science (Vol 7906, pp. 171–180).

  • Romero, C. (2001). Extended lexicographic goal programming: a unifying approach. Omega, 29, 63–71.

    Article  Google Scholar 

  • Sakawa, M., & Kubota, R. (2000). Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of Operational Research, 120, 393–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Sha, D., Lin, H. H., & Hsu, C. (2010). A modified particle swarm optimization for multi-objective open shop scheduling. In: Proceeding of the international multiconference of engineers and computer scientists, Vol 3.

  • Sha, D. Y., & Cheng-Yu, H. (2008). A new particle swarm optimization for the open shop scheduling problem. Computers & Operations Research, 35, 3243–3261.

    Article  MATH  Google Scholar 

  • Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operations Research, 111, 569–581.

    Article  MATH  Google Scholar 

  • Tassopoulos, I. X., & Beligiannis, G. N. (2012). Using particle swarm optimization to solve effectively the school timetabling problem. Soft Computing, 16, 1229–1252.

    Article  Google Scholar 

  • T’kindt, V., & Billaut, J. C. (2006). Multicriteria scheduling. Theory, models and algorithms (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Vijay Chakaravarthy, G., Marimuthu, S., & Naveen Sait, A. (2013). Performance evaluation of proposed differential evolution and particle swarm optimization algorithms for scheduling m-machine flow shops with lot streaming. Journal of Intelligent Manufacturing, 24, 175–191.

    Article  Google Scholar 

  • Wang, L., Zhou, G., Xu, Y., & Min, L. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 51(2), 3593–3608.

    Google Scholar 

  • Zheng, Y., Li, Y., & Lei, D. (2011). Swarm-based neighbourhood search for fuzzy job shop scheduling. International Journal of Innovative Computing and Applications, 3(3), 144–151.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their insightful and constructive comments. This research has been supported by the Spanish Government under research grants FEDER TIN2010-20976-C02-02 and MTM2010-16051 and by the Principality of Asturias (Spain) under grant Severo Ochoa BP13106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés González-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, J.J., González-Rodríguez, I., Vela, C.R. et al. Swarm lexicographic goal programming for fuzzy open shop scheduling. J Intell Manuf 26, 1201–1215 (2015). https://doi.org/10.1007/s10845-013-0850-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-013-0850-y

Keywords

Navigation