Skip to main content
Log in

Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

This paper investigates the slow light propagation in silicon on insulator wide slot photonic crystal waveguides (PCWs). Two design schemes are presented, relying on the dispersion engineering of hole lattice and slot, respectively. Mode patterns and band diagrams are calculated by 3D-plane wave expansion method. Then, coupling and slow light propagations are modeled using finite difference time domain method in a full Mach-Zehnder interferometer (MZI). Results show high amplitudes interference fringes and high coupling efficiencies. Fabrication and measurement of devices lead to slow light propagation with group indices above 50, while multiple scattering and localized modes near the band edge also observed. This study provides insights for losses in hollow core slot high group index waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2(8): 465–473

    Article  Google Scholar 

  2. Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252

    Article  Google Scholar 

  3. Monat C, Corcoran B, Pudo D, Ebnali-Heidar M, Grillet C, Pelusi M D, Moss D J, Eggleton B J, White T P, O’Faolain L, Kauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 344–356

    Article  Google Scholar 

  4. Frandsen L H, Lavrinenko AV, Fage-Pedersen J, Borel P I. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444–9450

    Article  Google Scholar 

  5. Kubo S, Mori D, Baba T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Optics Letters, 2007, 32(20): 2981–2983

    Article  Google Scholar 

  6. Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H M, Zhou Z P, Zhang X L. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942–5950

    Article  Google Scholar 

  7. Hao R, Cassan E, Le Roux X, Gao D S, Do Khanh V, Vivien L, Marris-Morini D, Zhang X L. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309–16319

    Article  Google Scholar 

  8. Petrov A Y, Eich M. Zero dispersion at small group velocities in photonic crystal waveguides. Applied Physics Letters, 2004, 85(21): 4866–4868

    Article  Google Scholar 

  9. O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenović M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627–27638

    Article  Google Scholar 

  10. Mazoyer S, Baron A, Hugonin J P, Lalanne P, Melloni A. Slow pulses in disordered photonic-crystal waveguides. Applied Optics, 2011, 50(31): G113–G117

    Article  Google Scholar 

  11. Xu Q F, Almeida V R, Panepucci R R, Lipson M. Experimental demonstration of guiding and confining light in nanometer-size lowrefractive-index material. Optics Letters, 2004, 29(14): 1626–1628

    Article  Google Scholar 

  12. Lin C Y, Wang X, Chakravarty S, Lee B S, Lai W, Luo J, Jen A K Y, Chen R T. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Applied Physics Letters, 2010, 97(9): 093304-1–093304-3

    Google Scholar 

  13. Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with siliconorganic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219

    Article  Google Scholar 

  14. Scullion M G, Di Falco A, Krauss T F. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosensors & Bioelectronics, 2011, 27(1): 101–105

    Article  Google Scholar 

  15. Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6(1): 38–41

    Article  Google Scholar 

  16. Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D S, Cassan E. Dispersion engineering of wide slot photonic crystal waveguides by bragg-like corrugation of the slot. IEEE Photonics Technology Letters, 2011, 23(18): 1298–1300

    Article  Google Scholar 

  17. Caer C, Le Roux X, Cassan E. Enhanced localization of light in slow wave slot photonic crystal waveguides. Optics Letters, 2012, 37(17): 3660–3662

    Article  Google Scholar 

  18. Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173–190

    Article  Google Scholar 

  19. Schulz S A, O’Faolain L, Beggs DM, White T P, Melloni A, Krauss T F. Dispersion engineered slow light in photonic crystals: a comparison. Journal of Optics, 2010, 12(10): 104004-1–104004-3

    Article  Google Scholar 

  20. Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3): 687–702

    Article  MATH  Google Scholar 

  21. Wang Z C, Zhu N, Tang Y B, Wosinski L, Dai D X, He S L. Ultracompact low-loss coupler between strip and slot waveguides. Optics Letters, 2009, 34(10): 1498–1500

    Article  Google Scholar 

  22. Hugonin J P, Lalanne P, White T P, Krauss T F. Coupling into slowmode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638–2640

    Article  Google Scholar 

  23. Gao J, Gesuele F, Koh W K, Murray C B, Assefa S, Wong C W. Weak exciton-photon coupling of PbS nanocrystals in air-slot modegap Si photonic crystal nanocavities in the near-infrared. In: Proceedings of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS). San Jose, CA, 2010

    Google Scholar 

  24. Mazoyer S, Hugonin J P, Lalanne P. Disorder-induced multiple scattering in photonic-crystal waveguides. Physical Review Letters, 2009, 103(6): 063903-1–063903-4

    Article  Google Scholar 

  25. Kuramochi E, Notomi M, Hughes S, Shinya A, Watanabe T, Ramunno L. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(16): 161318-1–161318-4

    Article  Google Scholar 

  26. Topolancik J, Vollmer F, Illic B. Random high-Q cavities in disordered photonic crystal waveguides. Applied Physics Letters, 2007, 91(20): 201102-1–201102-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Cassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caer, C., Le Roux, X., Serna, S. et al. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics. Front. Optoelectron. 7, 376–384 (2014). https://doi.org/10.1007/s12200-013-0384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0384-0

Keywords

Navigation