Skip to main content
Log in

Thermal conductivity reduction by embedding nanoparticles

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Reduction of thermal conductivity is important to enhance the performance of thermoelectric materials. One possible way to achieve this goal consists in embedding nanoparticles in the material, since they act as extrinsic phonon-scattering centers. In this paper, we study the effects of this embedding by means of a new formula for thermal conductivity obtained on the base of a hierarchy of hydrodynamical models which describe the transport of acoustic phonons in semiconductors. These models use as state variables suitable moments of the phonon occupation number, evolution equations of which are found starting from the Boltzmann–Peierls transport equation, and are closed by means of the maximum entropy principle. All the main interactions of phonons among themselves, with isotopes, nanoparticles, and boundaries are taken into account. Numerical results relative to the case of germanium nanoparticles embedded in a Si\(_{0.7}\)Ge\(_{0.3}\) alloy crystal show that the thermal conductivity can be significantly reduced even at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Due to accuracy problems in the numerical inversion, we cannot present results with a greater number of moments.

References

  1. Ezzahri, Y., Joulain, K.: Dynamical thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 112(8), 083515 (2012)

    Article  Google Scholar 

  2. Ezzahri, Y., Joulain, K.: Effect of embedding nanoparticles on the lattice thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 113(8), 043510 (2013)

    Article  Google Scholar 

  3. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., Shakouri, A.: Nanoparticle-in-alloy approach to efficient thermoelectrics: silicides in SiGe. Nano. Lett. 9(2), 711–715 (2009)

    Article  Google Scholar 

  5. Morelli, D.T., Heremans, J.P., Slack, G.A.: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–IV semiconductors. Phys. Rev. B 66, 094115 (2002)

    Article  Google Scholar 

  6. Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Article  Google Scholar 

  7. Volz, S.G.: Thermal insulating behavior in crystals at high frequencies. Phys. Rev. Lett. 87(7), 074301 (2001)

    Article  Google Scholar 

  8. Kundu, A., Mingo, N., Broido, D.A., Stewart, D.A.: Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)

    Article  Google Scholar 

  9. Mascali, G.: A new formula for thermal conductivity based on a hierarchy of hydrodynamical models. J. Stat. Phys. 163, 1268–1284 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046–1051 (1959)

    Article  MATH  Google Scholar 

  11. Mascali, G.: Maximum entropy principle in relativistic radiation hydrodynamics II: Compton and double Compton scattering. Contin. Mech. Thermodyn. 14(6), 549–561 (2002)

  12. Reinecke, S., Kremer, G.M.: Method of moments of Grad. Phys. Rev. A 42(2), 815 (1990)

    Article  Google Scholar 

  13. Struchtrup, H.: The BGK-model with velocity-dependent collision frequency. Contin. Mech. Thermodyn. 9(1), 23–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamical model for covalent semiconductors, with applications to GaN and SiC. Acta Appl. Math. 122(1), 335–348 (2012)

    MATH  Google Scholar 

  15. Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24(4–6), 417–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 55(3–4), 1003–1020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morandi, O., Barletti, L.: Particle dynamics in graphene: collimated beam limit. J. Comput. Theor. Transp. 43(1–7), 418–432 (2015)

    MathSciNet  Google Scholar 

  18. Muscato, O., Di Stefano, V.: An energy transport model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144(1), 171–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muscato, O., Di Stefano, V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A 44, 105501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Romano, V., Zwierz, M.: Electron–phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111–1131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by University of Calabria P.R.A.’s and by INDAM Progetto giovani 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mascali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascali, G. Thermal conductivity reduction by embedding nanoparticles. J Comput Electron 16, 180–189 (2017). https://doi.org/10.1007/s10825-016-0934-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0934-y

Keywords

Navigation