Skip to main content

Electron Transport Engineering by Nanostructures for Efficient Thermoelectrics

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

We theoretically investigate nanoscale structures such as nanoparticles embedded in bulk materials as a means of improving the thermoelectric energy conversion efficiency. We focus on the impact of such nanostructures on the electron transport in the host material, and discuss the enhancement of the thermoelectric power factor and thus the figure of merit. Nanostructures embedded in thermoelectric materials can create potential variations at the nanoscale due to the hetero-interfaces, which can alter the transport of charge carriers in the host material to enhance the Seebeck coefficient and the power factor. The energy-dependent electron scattering times induced by nanoparticles are calculated using the partial wave method. Thermoelectric transport properties are then calculated based on the linearized Boltzmann transport theory with the relaxation time approximation for various thermoelectric materials such as ErAs:InGaAs, PbTe, and Mg2Si. The effects of different kinds of nanoparticles including single-phase ionized metallic nanoparticles and core–shell nanoparticles embedded in semiconductors are investigated in these semiconductors. Finally the electron energy filtering scheme is discussed to further enhance the thermoelectric energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, LE: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  Google Scholar 

  2. Chen, G, Shakouri, A: Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transf. 124(2), 242–252 (2002)

    Article  Google Scholar 

  3. Lawrence Livermore Nat. Lab., “Estimated U.S. energy use in 2011,” https://flowcharts.llnl.gov/, Oct. 2012.

  4. Snyder, GJ, Toberer, ES: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  5. Vineis, CJ, Shakouri, A, Majumdar, A, Kanatzidis, MG: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)

    Article  Google Scholar 

  6. Shakouri, A: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)

    Article  Google Scholar 

  7. Pei, Y, Shi, X, LaLonde, A, Wang, H, Chen, L, Snyder, GJ: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (May 2011)

    Article  Google Scholar 

  8. Liu, W, Tan, X, Yin, K, Liu, H, Tang, X, Shi, J, Zhang, Q, Uher, C: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (April 2012)

    Article  Google Scholar 

  9. Heremans, JP, Jovovic, V, Toberer, ES, Saramat, A, Kurosaki, K, Charoenphakdee, K, Yamanaka, S, Snyder, JF: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)

    Article  Google Scholar 

  10. Zebarjadi, M, Joshi, G, Zhu, G, Yu, B, Minnich, A, Lan, Y, Wang, X, Dresselhaus, M, Ren, Z, Chen, G: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)

    Article  Google Scholar 

  11. Bahk, J-H, Bian, Z, Zebarjadi, M, Santhanam, P, Ram, R, Shakouri, A: Thermoelectric power factor enhancement by ionized nanoparticle scattering. Appl. Phys. Lett. 99, 072118 (2011)

    Article  Google Scholar 

  12. Bahk, J-H, Santhanam, P, Bian, Z, Ram, R, Shakouri, A: Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement. Appl. Phys. Lett. 100, 012102 (2012)

    Article  Google Scholar 

  13. Zide, JMO, Bahk, J-H, Singh, R, Zebarjadi, M, Zeng, G, Lu, H, Feser, JP, Xu, D, Singer, SL, Bian, ZX, Majumdar, A, Bowers, JE, Shakouri, A, Gossard, AC: High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108, 123702 (2010)

    Article  Google Scholar 

  14. Bahk, J-H, Bian, Z, Shakouri, A: Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, 075204 (2013)

    Article  Google Scholar 

  15. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 12–13 (Thomson Learning Inc., 1976).

    Google Scholar 

  16. Shakouri, A, Zebarjadi, M: Nanoengineered materials for thermoelectric energy conversion. In: Volz, S (ed.) Thermal Nanosystems and Nanomaterials. Springer, Berlin (2009)

    Google Scholar 

  17. H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd Ed. (John Wiley & Sons, 1985).

    Google Scholar 

  18. Kim, R, Datta, S, Lundstrom, MS: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)

    Article  Google Scholar 

  19. M. Lundstrom, Fundamentals of Carrier Transport, 2nd Ed. (Cambridge Univ. Press, 2000).

    Google Scholar 

  20. Vineis, CJ, Harman, TC, Calawa, SD, Walsh, MP, Reeder, RE, Singh, R, Shakouri, A: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008)

    Article  Google Scholar 

  21. Nolas, GS, Goldsmid, HJ: “Thermal conductivity of semiconductors”, Chap.1.4. In: Tritt, TM (ed.) Thermal Conductivity: Theory, Properties, and Applications. Kluwer, New York (2004)

    Google Scholar 

  22. Schiff, LI: Quantum Mechanics. McGraw-Hill, New York (1949)

    Google Scholar 

  23. Griffiths, DJ: Introduction to Quantum Mechanics. Prentice Hall, London (1995)

    MATH  Google Scholar 

  24. Zebarjadi, M, Esfarjani, K, Shakouri, A, Bahk, J-H, Bian, Z, Zeng, G, Bowers, J, Lu, H, Zide, J, Gossard, A: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009)

    Article  Google Scholar 

  25. Bahk, J-H, Bian, Z, Zebarjadi, M, Zide, JMO, Lu, H, Xu, D, Feser, JP, Zeng, G, Majumdar, A, Gossard, AC, Shakouri, A, Bowers, JE: Thermoelectric figure of merit of (In0.53Ga0.47As)0.8(In0.52Al0.48As)0.2 III-V semiconductor alloys. Phys. Rev. B 81, 235209 (2010)

    Article  Google Scholar 

  26. Palmstrøm, CJ, Tabatabaie, N, Allen, SJ: Epitaxial growth of ErAs on (100) GaAs. Appl. Phys. Lett. 53, 2608 (1988)

    Article  Google Scholar 

  27. Driscoll, DC, Hanson, MP, Mueller, E, Gossard, AC: Growth and microstructure of semimetallic ErAs particles embedded in an In0.53Ga0.47As matrix. J. Cryst. Growth 251, 243 (2003)

    Article  Google Scholar 

  28. Klenov, DO, Driscoll, DC, Gossard, AC, Stemmer, S: Scanning transmission electron microscopy of ErAs nanoparticles embedded in epitaxial In0.53Ga0.47As layers. Appl. Phys. Lett. 86, 111912 (2005)

    Article  Google Scholar 

  29. Zide, JM, Klenov, DO, Stemmer, S, Gossard, AC, Zeng, G, Bowers, JE, Vashaee, D, Shakouri, A: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005)

    Article  Google Scholar 

  30. Driscoll, DC, Hanson, M, Kadow, C, Gossard, AC: Transition to insulating behavior in the metal–semiconductor digital composite ErAs:InGaAs. J. Vac. Sci. Technol. B 19, 1631 (2001)

    Article  Google Scholar 

  31. Burke, PG, Lu, H, Rudawski, NG, Gossard, AC, Bahk, J-H, Bowers, JE: Electrical properties of Er-doped In0.53Ga0.47As. J. Vac. Sci. Technol. B 29(3), 03C117 (2011)

    Article  Google Scholar 

  32. Dorn, A, Peter, M, Kicin, S, Ihn, T, Ensslin, K, Driscoll, D, Gossard, AC: Charge tunable ErAs islands for backgate isolation in AlGaAs heterostructures. Appl. Phys. Lett. 82, 2631 (2003)

    Article  Google Scholar 

  33. Kadow, C, Fleischer, SB, Ibbetson, JP, Bowers, JE, Gossard, AC: Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)

    Article  Google Scholar 

  34. Pohl, P, Renner, FH, Eckardt, M, Schwanhausser, A, Friedrich, A, Yuksekdag, O, Malzer, S, Dohler, GH, Kiesel, P, Driscoll, D, Hanson, M, Gossard, AC: Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett. 83, 4035 (2003)

    Article  Google Scholar 

  35. Cahill, DG, Goodson, K, Majumdar, A: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223 (2002)

    Article  Google Scholar 

  36. Bahk, J-H: “Electron transport in ErAs:InGa(Al)As metal/semiconductor nanocomposites for thermoelectric power generation,” Ph.D. thesis, UC Santa Barbara, 2010.

    Google Scholar 

  37. Ravich, YI: “Selective carrier scattering in thermoelectric materials”, Chap. 7. In: Rowe, DM (ed.) CRC Handbook of Thermoelectrics, pp. 67–81. CRC Press, Boca Raton, FL (1995)

    Google Scholar 

  38. Bilc, DI, Mahanti, SD, Kanatzidis, MG: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006)

    Article  Google Scholar 

  39. Ravich, YI, Efimova, BA, Tamarchenko, VI: Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Stat. Sol. B. 43, 11–33 (1971)

    Article  Google Scholar 

  40. Mahan, GD: Thermionic refrigeration. J. Appl. Phys. 76, 4362 (1994)

    Article  Google Scholar 

  41. Shakouri, A, Bowers, JE: Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234 (1997)

    Article  Google Scholar 

  42. Shakouri, A., Labounty, C., Abraham, P., Piprek, J., Bowers, J.E.: Mater. Res. Soc. Proc., 545, 449– 45 (Mater. Res. Soc., Pittsburgh, 1999).

    Google Scholar 

  43. Vashaee, D, Shakouri, A: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)

    Article  Google Scholar 

  44. Kim, R, Jeong, C, Lundstrom, MS: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)

    Article  Google Scholar 

  45. Nolas, GS, Sharp, J, Goldsmid, HJ: Thermoelectrics: basic principles and new materials developments. Springer, New York (2001)

    Book  Google Scholar 

  46. Smith, RA: Semiconductors, 2nd edn. Cambridge University Press, London (1979)

    Google Scholar 

  47. Biswas, K, He, J, Blum, ID, Wu, C, Hogan, TP, Seidman, DN, Dravid, VP, Kanatzidis, MG: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (Sep. 2012)

    Article  Google Scholar 

  48. Zaitsev, VK, Fedorov, MI, Gurieva, EA, Eremin, IS, Konstantinov, PP, Samunin, AY, Vedernikov, MV: Highly effective Mg2Si1-xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)

    Article  Google Scholar 

  49. Zhang, Q, He, J, Zhu, TJ, Zhang, SN, Zhao, XB, Tritt, TM: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)

    Article  Google Scholar 

  50. Tani, J, Kido, H: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005)

    Article  Google Scholar 

  51. Akasaka, M, Iida, T, Matsumoto, A, Yamanaka, K, Takanashi, Y, Imai, T, Hamada, N: The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 104, 013703 (2008)

    Article  Google Scholar 

  52. Bergman, DJ, Levy, O: Thermoelectric properties of a composite medium. J. Appl. Phys. 70(11), 6821–6833 (1991)

    Article  Google Scholar 

  53. Friedel, J: On some electrical and magnetic properties of metallic solid solutions. Can. J. Phys. 34, 1190–1211 (1956)

    Article  Google Scholar 

  54. Ahmad, S, Hoang, K, Mahanti, SD: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006)

    Article  Google Scholar 

  55. Zhitinskaya, MK, Nemov, SA, Svechnikova, TE: Phys. Solid State 40, 1297 (1998)

    Article  Google Scholar 

  56. Heremans, JP, Wiendlocha, B, Chamoire, AM: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Zhixi Bian, Mona Zebarjadi, Parthi Santhanam, and Tela Favaloro for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Hyeong Bahk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bahk, JH., Shakouri, A. (2014). Electron Transport Engineering by Nanostructures for Efficient Thermoelectrics. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics