Skip to main content
Log in

Simultaneous all-optical basic arithmetic operations using QD-SOA-assisted Mach–Zehnder interferometer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

All-optical logic and arithmetic operations are expected to play an important role in high-speed communication systems. In this paper, we have presented a model to perform two basic arithmetic operations (addition/subtraction) on two binary digits based on a quantum dot semiconductor optical amplifier (QD-SOA)-assisted Mach–Zehnder interferometer. Using two QD-SOA-based switches, we have designed a half adder/subtractor circuit. The main advantage of this circuit is that simultaneous addition and subtraction operations are realized at the outputs. This circuit is designed theoretically and verified through numerical simulations. The theoretical study is carried out by taking into account the effect of amplified spontaneous emission. The dependence of the peak data power and that of the QD-SOA current density and length on the ER and Q factor of the switching outcome are explored and assessed by means of numerical simulations. The desirable device parameters has been examined in order to obtain the optimum best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Politi, C., Klonidis, D., O’Mahony, M.J.: Dynamic behavior of wavelength converters based on FWM in SOAs. IEEE J. Quant. Electron. 42, 108–125 (2006)

    Article  Google Scholar 

  2. Igarashi, K., Kikuchi, K.: Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems. IEEE J. Sel. Top. Quantum Electron. 14, 551–565 (2008)

    Article  Google Scholar 

  3. Kim, S.H., Kim, J.H., Choi, J.W., Son, C.W., Byun, Y.T., Jhon, Y.M., Lee, S., Woo, D.H., Kim, S.H.: All-optical half-adder using cross-gain modulation in semiconductor optical amplifiers. Opt. Express 14(22), 10693–10698 (2006)

    Article  Google Scholar 

  4. Kim, J.H., Byun, Y.T., Jhon, Y.M., Lee, S., Woo, D.H., Kim, S.H.: All-optical half-adder using semiconductor optical amplifier based devices. Opt. Commun. 218(4–6), 345–349 (2003)

    Article  Google Scholar 

  5. Chen, Z.: Simple novel all-optical half-adder. Opt. Eng. 49(4), 4320–4326 (2010)

    Google Scholar 

  6. Singh, K., Kaur, G.: All-optical half adder and half subtractor based on semiconductor optical amplifier. J. Commun. Softw. 1(1), 42–51 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45(10), 1027–1036 (2013)

    Article  Google Scholar 

  8. Bakhtiar, L.A., Yaghoubi, E., Adami, A., Hamidi, S.M., Hosseinzadeh, M.: The design of half subtractor logic function based on nonlinear directional coupler. J. Adv. Comput. Res. 2(2), 13–20 (2011)

    Google Scholar 

  9. Thongmee, S., Yupapin, P.P.: All-optical half adder/subtractor using dark-bright soliton conversion control. Procedia Eng. 8, 217–222 (2011)

    Article  Google Scholar 

  10. Lei, L., Dong, J., Zhang, Y., He, H., Yu, Y., Zhang, X.: Reconfigurable photonic full adder and full subtractor based on three-input XOR gate and logic minterms. Electron. Lett. 48(7), 399–400 (2012)

    Article  Google Scholar 

  11. Kumar, A., Kumar, S., Raghuwanshi, S.K.: Implementation of full adder and full subtractor based on electro-optic effect in Mach-Zehnder interferometers. Opt. Commun. 324, 93–107 (2014)

    Article  Google Scholar 

  12. Luangxaysana, K., Phongsanam, P., Mitatha, S., Yoshida, M., Komine, N., Yupapin, P.P.: All-optical logic and arithmetic operation using soliton control for tree architecture use. Inf. Technol. J. 11, 1227–1234 (2012)

    Article  Google Scholar 

  13. Gayen, D.K., Bhattachryya, A., Chattopadhyay, T., Roy, J.N.: Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J. Lightwave Technol. 30(21), 3387–3393 (2012)

    Article  Google Scholar 

  14. Gayen, D.K., Chattopadhyay, T.: Designing of optimized all-optical half adder circuit using single quantum-dot semiconductor optical amplifier assisted Mach-Zehnder interferometer. J. Lightwave Technol. 31(12), 2029–2035 (2013)

    Article  Google Scholar 

  15. Gayen, D.K., Chattopadhyay, T., Bhattacharyya, A., Basak, S., Dey, D.: All-optical half-adder/half-subtractor using terahertz optical asymmetric demultiplexer. Appl. Opt. 53(36), 8401–8409 (2014)

    Article  Google Scholar 

  16. Kotb, A., Zoiros, K.E.: 1 Tb/s high quality factor NAND gate quantum-dot semiconductor optical amplifiers in Mach-Zehnder interferometers. J. Comput. Electron. 13, 555–561 (2014)

    Article  Google Scholar 

  17. Wegert, M., Schwochert, D., Scholl, E., Ludge, K.: Integrated quantum-dot laser devices: modulation stability with electro-optic modulator. Opt. Quantum Electron. 46, 1337–1344 (2014)

    Article  Google Scholar 

  18. Kotb, A., Zoiros, K.E.: Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt. Quantum Electron. 45, 1213–1221 (2013)

    Article  Google Scholar 

  19. Ezra, Y.B., Lembrikov, B.I.: Semiconductor optical amplifier based on a quantum dot-in-a-well (QDWELL) structure under optical pumping. IEEE J. Quantum Electron. 50(5), 340–347 (2014)

    Article  Google Scholar 

  20. Taleb, H., Abedi, K.: Optical gain, phase, and refractive index dynamics in photonic crystal quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 50(8), 605–612 (2014)

    Article  Google Scholar 

  21. Trapala, K.S., Dorren, H.J.S.: Dynamic and static gain characteristics of quantum-dot semiconductor optical amplifiers operating at 1.55 \(\mu \) m. Opt. Commun. 298–299, 106–113 (2013)

  22. Hakimiyan, F., Derhami, V.: Design of quantum dot semiconductor optical amplifier by intelligence methods. Procedia Comput. Sci. 3, 449–452 (2011)

    Article  Google Scholar 

  23. Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 17(21), 18469–18477 (2009)

    Article  Google Scholar 

  24. Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31(23), 3813–3821 (2013)

    Article  Google Scholar 

  25. Taleb, H., Abedi, K.: Design of a low-power all-optical NOR gate using photonic crystal quantum-dot semiconductor optical amplifiers. Opt. Lett. 39(21), 6237–6240 (2014)

    Article  Google Scholar 

  26. Li, W., Hu, H., Dutta, N.K.: High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers. J. Mod. Opt. 60(20), 1741–1749 (2013)

    Article  MathSciNet  Google Scholar 

  27. Meuer, C., Kim, J., Laemmlin, M., Liebich, S., Capua, A., Eisenstein, G., Kovsh, A.R., Mikhrin, S.S., Krestnikov, I.L., Bimberg, D.: Static gain saturation in quantum dot semiconductor optical amplifiers. Opt. Express 16(11), 8269–8279 (2008)

    Article  Google Scholar 

  28. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: All optical logic NAND gate based on two-photon absorption in semiconductor optical amplifiers. Opt. Commun. 283, 4707–4712 (2010)

    Article  Google Scholar 

  29. Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical and gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder Interferometer. Prog. Electromagn. Res. B 50, 113–140 (2013)

    Article  Google Scholar 

  30. Ma, S., Chen, Z., Sun, H., Dutta, N.K.: High speed all optical logic gates based on InAs/GaAs quantum dot semiconductor optical amplifiers. In: Osinski, M. (ed.) Physics and Simulation of optoelectronic devices XVII, vol. 7211, p. 721190-1-9. Proc. of SPIE. doi:10.1117/12.802589

  31. Rostami, A., Nejad, H.B.A., Qartavol, R.M., Saghai, H.R.: Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46, 354–360 (2010)

    Article  Google Scholar 

  32. Mork, J., Nielsen, M.L., Berg, T.W.: The dynamics of semiconductor optical amplifiers: modeling and applications. Opt. Photonics News 14(7), 42–48 (2003)

    Article  Google Scholar 

  33. Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Specific features of XGM in QD-SOA. IEEE J. Quantum Electron. 43(8), 730–737 (2007)

    Article  Google Scholar 

  34. Borri, A., Langbein, W., Heinrichsdorff, F., Mao, M.-H.: Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE Sel. Top. Quantum Electron. 6(3), 544–551 (2000)

    Article  Google Scholar 

  35. Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Line-width enhancement factor in InGaAs quantum dot amplifiers. IEEE Quantum Electron. 40(10), 1423–1429 (2004)

    Article  Google Scholar 

  36. Lin, W., Ma, S., Hu, H., Dutta, N.K.: All optical latches using quantum-dot semiconductor optical amplifier. Opt. Commun. 285, 5138–5143 (2012)

    Article  Google Scholar 

  37. Girardin, F., Guekos, G., Houbavlis, A.: Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Techol. Lett. 10(6), 784–786 (1998)

    Article  Google Scholar 

  38. Kim, J., Meuer, C., Bimberg, D., Eisenstein, G.: Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(11), 1670–1680 (2010)

    Article  Google Scholar 

  39. Akiyama, T., Kuwatsuka, H., Simoyama, T., Nakata, Y., Mukai, K., Sugawara, M., Wada, O., Ishikawa, H.: Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device. IEEE Photon. Technol. Lett. 12, 1301–1303 (2000)

    Article  Google Scholar 

  40. Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Otsubo, K., Ebe, H.: Quantum-dot semiconductor optical amplifier, materials and devices for optics and wireless communications. Proc. SPIE 4905, 259–275 (2002)

    Article  Google Scholar 

  41. Dimitriadou, E., Zoiros, K.E.: On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt. Laser Technol. 44(6), 1971–1981 (2012)

    Article  Google Scholar 

  42. Dimitriadou, E., Zoiros, K.E.: Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt. Commun. 285, 1710–1716 (2012)

    Article  Google Scholar 

  43. Bogoni, A., Poti, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13(1), 1–12 (2007)

    Article  Google Scholar 

  44. Weber, H.-G., Ludwig, R., Ferber, S., Langhorst, C.S., Kroh, M., Marembert, V., Boerner, C., Schubert, C.: Ultrahigh-speed OTDM-transmission technology. J. Lightwave Technol. 24(12), 4616–4627 (2006)

    Article  Google Scholar 

  45. Zoiros, K.E., Houbavlis, T., Moyssidis, M.: Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier. Opt. Commun. 254(4–6), 310–329 (2005)

    Article  Google Scholar 

  46. Yao, X.S., Yan, L.-S., Zhang, B., Willner, A.E., Jiang, J.: All-optical scheme for automatic polarization division demultiplexing. Opt. Express. 15(12), 7407–7414 (2007)

    Article  Google Scholar 

  47. Goodman, J.W.: Fan-in and Fan-out with optical interconnections. OpticaActa 32(12), 1489–1496 (1985)

    Google Scholar 

  48. Ueno, Y., Nakamura, S., Tajina, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 19(11), 2573–2589 (2002)

    Article  Google Scholar 

  49. Gayen, D.K., Chattopadhyay, T., Zoiros, K.E.: All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach-Zehnder interferometer. J. Comput. Electron. 14, 129–138 (2015)

    Article  Google Scholar 

  50. Qasaimeh, O.: Characteristics of cross-gain(XG) wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 16(2), 542–544 (2004)

    Article  Google Scholar 

  51. Han, H., Zhang, M., Ye, P., Zhang, F.: Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer. Opt. Commun. 281, 5140–5145 (2008)

    Article  Google Scholar 

  52. Xiao, J.-L., Huang, Y.-Z.: Numerical analysis of gain saturation, noise figure and carrier distribution for quantum-dot semiconductor-optical amplifiers. IEEE J. Quant. Electron. 44(5), 448–455 (2008)

    Article  MathSciNet  Google Scholar 

  53. Hinton, K., Raskutti, G., Farrell, P.M., Tucker, R.S.: Switching energy and device size limits on digital photonic signal processing technologies. IEEE J. Sel. Topics Quant. Electron. 14, 938–945 (2008)

    Article  Google Scholar 

  54. Dimitriadou, E., Zoiros, K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)

  55. Li, G., Qian, F.: Code conversion from signed-digit to complement representation based on look-ahead optical logic operations. Opt. Eng. 40(11), 2446–2451 (2001)

    Article  Google Scholar 

  56. Zoiros, K.E., Avramidis, P., Koukourlis, C.S.: Performance investigation of semiconductor optical amplifier-based ultrafast nonlinear interferometer in nontrivial switching mode. Opt. Eng. 47(11), Art. No. 115006 (2008)

  57. Sun, H., Wang, Q., Dong, H., Dutta, N.K.: XOR performance of a quantum dot semiconductor optical amplifier based Mach–Zehnder interferometer. Opt. Express 13(6), 1892–1899 (2005)

    Article  Google Scholar 

  58. Ma, S., Chen, Z., Sun, H., Dutta, N.K.: High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Express 18(7), 6417–6422 (2010)

    Article  Google Scholar 

  59. Nady, M., Hussein, K.F.A., Ammar, A.A.: Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier based Mach-Zehnder interferometer. Prog. Electromagn. Res. B 54, 69–88 (2013)

    Article  Google Scholar 

  60. Jung, Y.J., Wan Son, C., Min Jhon, Y., Lee, S., Park, N.: One-level simplification method for all—optical combinational logic circuits. IEEE Photon. Technol. Lett. 20(10), 800–802 (2008)

    Article  Google Scholar 

  61. Dong, J., Zhang, X., Huang, D.: A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection. Opt. Express 17(10), 7725–7730 (2009)

    Article  Google Scholar 

  62. Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Improvement of gain recovery in QD-VCSOA at 1-Tb/s cross gain modulation using an additional light beam. IEEE J. Quantum Electron. 45(1), 34–41 (2009)

    Article  Google Scholar 

  63. Wu, X., Qiu, K., Ling, Y.: Novel optical power equalizer and optical hard limiter based on quantum-dot semiconductor optical amplifiers. Optoelectronic materials and devices III, Luo,Y., Buus, J., Koyama, F., Lo, Y.-H. (eds) Proc. Of SPIE, vol. 7135, 71353N-1-8

  64. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284, 5798 (2011)

    Article  Google Scholar 

  65. Agrawal, G.P.: Fiber-Optic Communication System, 3rd edn. Wiley, New York (2002)

    Book  Google Scholar 

Download references

Acknowledgments

One of the author (D.K.Gayen) is grateful to Technical Education Quality Improvement Program (TEQIP) phase II by National Project Implementation Unit (A Unit of Ministry of Human Resource Development, Govt. of India for Implementation of World Bank-Assisted Project in Technical Education) for providing the grant for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanay Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayen, D.K., Chattopadhyay, T. Simultaneous all-optical basic arithmetic operations using QD-SOA-assisted Mach–Zehnder interferometer. J Comput Electron 15, 982–992 (2016). https://doi.org/10.1007/s10825-016-0854-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0854-x

Keywords

Navigation