Skip to main content
Log in

All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A scheme for an ultra-high speed all-optical D flip-flop based on single quantum-dot semiconductor optical amplifier (QD-SOA) assisted Mach–Zehnder interferometer (MZI) is proposed and its performance is theoretically investigated. The architecture of the all-optical circuit comprises of a properly driven and configured single QD-SOA-MZI with an external feedback loop. The impact of the input data pulse width as well as of the QD-SOAs length on the extinction ratio, contrast ratio, Q factor, relative opening of the pseudo-eye diagram and amplitude modulation of the switching outcome is explored and assessed by means of numerical simulations. The obtained results confirm the feasibility of the devised flip-flop scheme at a much higher data rate than that enabled by the conventional SOA-assisted MZI, with acceptable performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agrawal, G.P.: Lightwave technology: components and devices. Wiley, New York (2004)

    Google Scholar 

  2. Blumenthal, D.J., Bowers, J.E., Rau, L., Chou, H.-F., Rangarajan, S., Wang, W., Poulsen, H.N.: Optical signal processing for optical packet switching networks. IEEE Commun. Mag. 41(2), S23–S29 (2003)

    Article  Google Scholar 

  3. Liu, Y., Hill, M.T., Calabretta, N., Tangdiongga, E., Geldenhuys, R., Zhang, S., Li, Z., de Waardt, H., Khoe, G.D., Dorren, H.J.S.: All-optical signal processing for optical packet switching networks. Photonic Devices and Algorithms for Computing VII, Proc. SPIE, 5907, 59070J/1-12 (2005)

  4. Hill, M.T., Sritvatsa, A., Calabretta, N., Liu, Y., de Waardt, H., Khoe, G.D., Dorren, H.J.S.: \(1 \times 2\) optical packet switch using all-optical header processing. Electron. Lett. 37(12), 774–775 (2001)

  5. Dorren, H.J.S., Hill, M.T., Liu, Y., Calabretta, N., Srivatsa, A., Huijskens, F.M., de Waardt, H., Khoe, G.D.: Optical packet switching and buffering by using all-optical signal processing methods. J. Lightwave Technol. 21(1), 2–12 (2003)

    Article  Google Scholar 

  6. Martínez, J.M., Clavero, R., Ramos, F., Martí, J.: Novel scheme for all-optical packet routing in optical label-swapping networks. Proc. ECOC 3, 726–727 (2004)

    Google Scholar 

  7. Takenaka, M., Nakano, Y.: Realization of all-optical flip-flop using directionally coupled bistable laser diode. IEEE Photon. Technol. Lett. 16(1), 45–47 (2004)

    Article  Google Scholar 

  8. Kim, Y.-I., Kim, J.H., Lee, S., Woo, D.H., Kim, S.H., Yoon, T.-H.: Broad-band all-optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA. IEEE Photon. Technol. Lett. 16(2), 398–400 (2004)

    Article  Google Scholar 

  9. Clavero, R., Ramos, F., Martí, J.: All-optical flip-flop based on an active Mach–Zehnder interferometer with a feedback loop. Opt. Lett. 30(21), 2861–2863 (2005)

    Article  Google Scholar 

  10. Clavero, R., Ramos, F., Martí, J.: Bi-stability analysis for optical flip-flops based on a SOA-MZI with feedback. J. Lightwave Technol. 25(11), 3641–3648 (2007)

    Article  Google Scholar 

  11. Hoang, N.L., Cho, J.S., Won, Y.H., Jeong, Y.D.: All-optical flip-flop with high on–off contrast ratio using two injection locked single-mode Fabry-Perot laser diodes. Opt. Express 15(8), 5166–5171 (2007)

    Article  Google Scholar 

  12. Huybrechts, K., Morthier, G., Baets, R.: Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt. Express 16(15), 11405–11410 (2008)

    Article  Google Scholar 

  13. Kaplan, A.M., Agrawal, G.P., Maywar, D.N.: All-optical flip-flop operation of VCSOA. Electron. Lett. 45(2), 127–128 (2009)

  14. Wang, J., Meloni, G., Berrettini, G., Potì, L., Bogoni, A.: All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates. IEEE J. Sel. Top. Quantum Electron. 16(5), 1486–1494 (2010)

    Article  Google Scholar 

  15. Hill, M.T., de Waardt, H., Khoe, G.D., Dorren, H.J.S.: Fast optical flip-flop by use of Mach–Zehnder interferometers. Microw. Opt. Technol. Lett. 31(6), 411–415 (2001)

    Article  Google Scholar 

  16. Clavero, R., Ramos, F., Martínez, J.M., Martí, J.: All-optical flip-flop based on a single SOA-MZI. IEEE Photon. Technol. Lett. 17(4), 843–845 (2005)

    Article  Google Scholar 

  17. Fitsios, D., Vyrsokinos, K., Miliou, A., Pleros, N.: Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates. IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012)

    Article  Google Scholar 

  18. Fitsios, D., Vagionas, C., Kanellos, G.T., Miliou, A., Pleros, N.: Memory speed analysis of an optical flip-flop employing a SOA-MZI and a feedback loop. IEEE J. Quantum Electron. 49(2), 169–178 (2013)

  19. Chattopadhyay, T., Reis, C., André, P., Teixeira, A.: Theoretical analysis of all-optical D flip-flop using a single SOA assisted symmetric MZI. Opt. Commun. 285(9), 2266–2275 (2012)

    Article  Google Scholar 

  20. Poustie, A.: Semiconductor devices for all-optical signal processing. Proc. ECOC 3(We3.5.1), 475–478 (2005)

    Google Scholar 

  21. Schreieck, R.P., Kwakernaak, M.H., Jackel, H., Melchior, H.: All-optical switching at multi-100-Gbit/s data rates with Mach–Zehnder interferometer switches. IEEE J. Quantum Electron. 38(8), 1053–1061 (2002)

    Article  Google Scholar 

  22. Nakamura, S., Ueno, Y., Tajima, K., Sasaki, J., Sugimoto, T., Kato, T., Shimoda, T., Itoh, M., Hatakeyama, H., Tamanuki, T., Sasaki, T.: Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch. IEEE Photon. Technol. Lett. 12(4), 425–427 (2000)

    Article  Google Scholar 

  23. Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment. J. Lightwave Technol. 24(9), 3392–3399 (2006)

    Article  Google Scholar 

  24. Ye, X., Ye, P., Zhang, M.: All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt. Fiber Technol. 12, 312–316 (2006)

    Article  Google Scholar 

  25. Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J. Quantum Electron. 40(6), 703–710 (2004)

    Article  Google Scholar 

  26. Li, X., Li, G.: Comments on Theoretical analysis of gain recovery time and chirp in QD-SOA. IEEE Photon. Technol. Lett. 18(22), 2434–2435 (2006)

    Article  Google Scholar 

  27. Ben-Ezra, Y., Haridim, M., Lembrikov, B.I.: Theoritical analysis of gain-recovery time and chirp in QD-SOA. IEEE Photon. Technol. Lett. 17(9), 1803–1805 (2005)

    Article  Google Scholar 

  28. Sugawara, M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B 69(23), 235332/1-39 (2004)

  29. Berg, T.W., Bischoff, S., Magnusdottir, I., Mørk, J.: Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photon. Technol. Lett. 13(6), 541–543 (2001)

    Article  Google Scholar 

  30. Qasaimeh, O.: Optical gain and saturation characteristics quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 39(6), 793–798 (2003)

    Article  Google Scholar 

  31. Berg, T.W., Mørk, J.: Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40(11), 1527–1539 (2004)

    Article  Google Scholar 

  32. Berg, T.W., Mørk, J., Hvam, J.M.: Gain dynamics and saturation in semiconductor quantum-dot amplifiers. N. J. Phys. 6, 178–200 (2004)

    Article  Google Scholar 

  33. Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Acceleration of gain recovery and dynamics of electrons in QD-SOA. IEEE J. Quantum Electron. 41(10), 1268–1273 (2005)

    Article  Google Scholar 

  34. Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Specific features of XGM in QD-SOA. IEEE J. Quantum Electron. 43(8), 730–737 (2007)

    Article  Google Scholar 

  35. Majer, N., Ludge, K., Schöll, E.: Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301–235306 (2010)

    Article  Google Scholar 

  36. Erneux, T., Viktorov, E.A., Mandel, P., Piwonski, T., Huyet, G., Houlihan, J.: The fast recovery dynamics of a quantum dot semiconductor optical amplifier. Appl. Phys. Lett. 94(11), 113501–113503 (2009)

    Article  Google Scholar 

  37. Zilkie, A.J., Meier, J., Mojahedi, M., Poole, P.J., Barrios, P., Poitras, D., Rotter, T.J., Yang, C., Stintz, A., Malloy, K.J., Smith, P.W.E., Aitchison, J.S.: Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at \(1.55 \mu \)m. IEEE J. Quantum Electron. 43(11), 982–991 (2007)

  38. Uskov, A.V., O’Reilly, E.P., Manning, R.J., Webb, R.P., Cotter, D., Laemmlin, M., Ledentsov, N.N., Bimberg, D.: On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers. IEEE Photon. Technol. Lett. 16(5), 1265–1267 (2004)

    Article  Google Scholar 

  39. Han, H., Zhang, M., Ye, P., Zhang, F.: Parameter design and performance analysis of an ultrafast all-optical XOR gate based on quantum-dot semiconductor optical amplifiers in nonlinear Mach–Zehnder interferometer. Opt. Commun. 281(20), 5140–5145 (2008)

    Article  Google Scholar 

  40. Rostami, A., Nejad, H.B.A., Qartavol, R.M., Saghai, H.R.: Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(3), 354–360 (2010)

    Article  Google Scholar 

  41. Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45(1), 34–41 (2009)

    Article  Google Scholar 

  42. Dimitriadou, E., Zoiros, K.E.: On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44(6), 1971–1981 (2012)

    Article  Google Scholar 

  43. Dimitriadou, E., Zoiros, K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)

    Article  Google Scholar 

  44. Gayen, D.K., Bhattacharyya, A., Chattopadhyay, T., Roy, J.N.: Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J. Lightwave Technol. 30(21), 3387–3393 (2012)

    Article  Google Scholar 

  45. Gayen, D.K., Chattopadhyay, T.: Designing of optimized all-optical half adder circuit using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer. J. Lightwave Technol. 31(12), 2029–2035 (2013)

    Article  Google Scholar 

  46. Sun, H., Wang, Q., Dong, H., Dutta, N.K.: All-optical logic performance of quantum-dot semiconductor amplifier-based devices. Microw. Opt. Technol. Lett. 48(1), 29–35 (2006)

    Article  Google Scholar 

  47. Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical AND gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Progr. Electromagn. Res. B 50, 113–140 (2013)

    Article  Google Scholar 

  48. Nielsen, M.L., Mørk, J., Fjelde, T., Dagens, B.: Numerical analysis of an all-optical logic XOR gate based on an active MZ interferometer. Proc. CLEO 1, 608–609 (2002)

  49. See for instance the relevant data sheets available online. http://www.santec.com/en/products/instruments/manualproducts/odl-340, http://www.generalphotonics.com/ProductDetail.aspx?dept=10&cp=66&d=1. Accessed June 2014.

  50. Pleros, N., Zakynthinos, P., Poustie, A., Tsiokos, D., Bakopoulos, P., Petrantonakis, D., Kanellos, G.T., Maxwell, G., Avramopoulos, H.: Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching. IET Proc. Optoelectron. 1(3), 120–126 (2007)

  51. Zoiros, K.E., Das, M.K., Gayen, D.K., Maity, H.K., Chattopadhyay, T., Roy, J.N.: All-optical pseudorandom binary sequence generator with TOAD-based D flip-flops. Opt. Commun. 284(19), 4297–4306 (2011)

    Article  Google Scholar 

  52. Toliver, P., Runser, R.J., Glesk, I., Prucnal, P.R.: Comparison of three nonlinear interferometric optical switch geometries. Opt. Commun 175(4–6), 365–373 (2000)

    Article  Google Scholar 

  53. Ueno, Y., Nakamura, S., Tajina, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 19(11), 2573–2589 (2002)

    Article  Google Scholar 

  54. Zoiros, K.E., Botsiaris, C., Koukourlis, C.S., Houbavlis, T.: Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration. Opt. Eng. 45(11), 1150051-14 (2006)

  55. Houbavlis, T., Zoiros, K.E., Kanellos, G., Tsekrekos, C.: Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Commun. 232(1–6), 179–199 (2004)

    Article  Google Scholar 

  56. Papadopoulos, G., Zoiros, K.E.: On the design of semiconductor optical amplifier-assisted Sagnac interferometer with full data dual output switching capability. Opt. Laser Technol. 43(3), 697–710 (2011)

    Article  Google Scholar 

  57. Agrawal, G.P.: Fiber-optic communication system, 3rd edn. Wiley, New York (2002)

    Book  Google Scholar 

  58. Bogoni, A., Potì, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13(1), 1–12 (2007)

    Article  Google Scholar 

  59. Gutiérrez-Castrejón, R., Occhi, L., Schares, L., Guekos, G.: Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing. Opt. Commun. 195(1–4), 167–177 (2001)

    Article  Google Scholar 

  60. Vardakas, J.S., Zoiros, K.E.: Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot filter and SOA-assisted Sagnac switch. Opt. Eng. 46(8), 085005/1-21 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanay Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayen, D.K., Chattopadhyay, T. & Zoiros, K.E. All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer. J Comput Electron 14, 129–138 (2015). https://doi.org/10.1007/s10825-014-0632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0632-6

Keywords

Navigation